Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide, and it is characterized by the production of immature malignant cells in the bone marrow. Computer vision techniques provide automated analysis that can help specialists diagnose this disease. Microscopy image analysis is the most economical method for the initial screening of patients with ALL, but this task is subjective and time-consuming.
View Article and Find Full Text PDFAutoimmune diseases are the third highest cause of mortality in the world, and the identification of an anti-nuclear antibody via an immunofluorescence test for HEp-2 cells is a standard procedure to support diagnosis. In this work, we assess the performance of six preprocessing strategies and five state-of-the-art convolutional neural network architectures for the classification of HEp-2 cells. We also evaluate enhancement methods such as hyperparameter optimization, data augmentation, and fine-tuning training strategies.
View Article and Find Full Text PDF