The supramolecular assembly of simple colloids into complex, hierarchical structures arises from a delicate interplay of short-range directional and isotropic long-range forces. These assemblies are highly sensitive to environmental changes, such as temperature variations and the presence of specific molecules, making them promising candidates for nanomachine design. In this study, we investigate the effect of hydrostatic pressure, up to 1800 bar, on the supramolecular assemblies of cyclodextrin/surfactant complexes.
View Article and Find Full Text PDFThis study investigates the temperature responsive behavior of inclusion complexes formed by weakly anionic alkyl ethoxy carboxylates and α (αCD) and β-cyclodextrins (βCD). Small-angle neutron scattering (SANS) was performed to probe the structural behaviour at the 1-100 nanometer scale of the hierarchical assemblies at different temperatures. The phase transitions and thermodynamics were systematically monitored as a function of the degree of ionization of the surfactant by differential scanning calorimetry (DSC).
View Article and Find Full Text PDFIn this work, the inclusion complexes of alkyl ethoxy carboxylates with α-cyclodextrin (αCD) and β-cyclodextrin (βCD) were investigated. The thermodynamics of the complexation process was probed by isothermal titration calorimetry (ITC) and volumetry as a function of the degree of ionization of the surfactant. The complexation process was shown to be an enthalpically driven pH-independent process.
View Article and Find Full Text PDFCyclodextrins (CDs) play an important role in self-assembly systems of amphiphiles. The structure of CDs provides distinguished physicochemical properties, including the ability to form host-guest complexes. The complexation affects the properties of guest molecules and can produce supramolecular aggregates with desirable characteristics for fundamental and practical applications.
View Article and Find Full Text PDF