Chalcones are a group of molecules with recognized biological potential against many diseases, including cancer. Thus, studies on this structure and derivatives have become an attractive chemical strategy to optimize their observed biological activities. One of the synthetic routes used to obtain chalcone derivatives is esterification using either commercial acid chlorides or carboxylic acids.
View Article and Find Full Text PDFGenome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice.
View Article and Find Full Text PDFA series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC ≤ 50 nM) vs.
View Article and Find Full Text PDFBacillus subtilis species complex is known as lipopeptide-producer with biotechnological potential for pharmaceutical developments. This study aimed to identify lipopeptides from a bacterial isolate and evaluate their antifungal effects. Here, we isolated and identified a lipopeptide-producing bacterium as a species of Bacillus subtilis complex (strain UL-1).
View Article and Find Full Text PDFCryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the and antifungal potential of organoselenium compounds against Cryptococcus neoformans.
View Article and Find Full Text PDFCyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity.
View Article and Find Full Text PDFAims: Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy.
View Article and Find Full Text PDFAnkyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis.
View Article and Find Full Text PDFCancer genome instability arises from diverse defects in DNA-repair machinery, which make cancer cells more susceptible to DNA targeting agents. The interrelation between DNA repair deficiency and the increased effect of DNA targeting agents highlights the double-strand break (DSB) repair, which comprises the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. The DNA targeting agents are classified into two major groups: non-covalent DNA binding agents and covalent DNA-reactive agents.
View Article and Find Full Text PDFBackground: Effective cancer treatment is a major public health challenge. The limitations of current therapies and their adverse effects reduce the efficacy of treatment, leading to significant mortality rates worldwide. Moreover, natural product chemistry occupies a prominent role in the search for new treatment alternatives, by contributing a spectrum of chemical structures that may potentially yield new bioactive compounds.
View Article and Find Full Text PDF