In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures.
View Article and Find Full Text PDFBiaryl cyclohexene carboxylic acids were discovered as full and potent niacin receptor (GPR109A) agonists. Compound 1e (MK-6892) displayed excellent receptor activity, good PK across species, remarkably clean off-target profiles, good ancillary pharmacology, and superior therapeutic window over niacin regarding the FFA reduction versus vasodilation in rats and dogs.
View Article and Find Full Text PDFTricyclic analogues were rationally designed as the high affinity niacin receptor G-protein-coupled receptor 109A (GPR109A) agonists by overlapping three lead structures. Various tricyclic anthranilide and cycloalkene carboxylic acid full agonists were discovered with excellent in vitro activity. Compound 2g displayed a good therapeutic index regarding free fatty acids (FFA) reduction and vasodilation effects in rats, with very weak cytochrome P450 2C8 (CYP2C8) and cytochrome P450 2C9 (CYP2C9) inhibition, and a good mouse pharmacokinetics (PK) profile.
View Article and Find Full Text PDFPyrazolopyrimidines were discovered as the first class of allosteric agonists for the high affinity nicotinic acid receptor GPR109A. In addition to its intrinsic activity, compound 9n significantly enhances nicotinic acid binding to the receptor, thereby potentiating the functional efficacy of nicotinic acid.
View Article and Find Full Text PDFBiaryl anthranilides are reported as potent and selective full agonists for the high affinity niacin receptor GPR109A. The SAR presented outlines approaches to reduce serum shift and both CYPCYP2C8 and CYP2C9 liabilities, while improving PK and maintaining excellent receptor activity. Compound 2i exhibited good in vivo antilipolytic efficacy while providing a significantly improved therapeutic index over vasodilation (flushing) with respect to niacin in the mouse model.
View Article and Find Full Text PDFBackground: Triacylglyerol-rich very low density lipoprotein (VLDL) particles are the primary carriers of fatty acids in the circulation and as such serve as a rich energy source for peripheral tissues. Receptor-mediated uptake of these particles is dependent upon prior association with apolipoprotein E (apoE-VLDL) and is brought about by cell surface heparan sulfate proteoglycans (HSPG) in some cell types and by the low density lipoprotein receptor-related protein (LRP) in others. Although LRP's role in apoE-VLDL uptake has been well studied, the identity of the HSPG family member that mediates apoE-VLDL uptake has not been established.
View Article and Find Full Text PDFBackground: Transport of fatty acids within the cytosol of adipocytes and their subsequent assimilation into lipid droplets has been thoroughly investigated; however, the mechanism by which fatty acids are transported across the plasma membrane from the extracellular environment remains unclear. Since triacylglycerol-rich lipoproteins represent an abundant source of fatty acids for adipocyte utilization, we have investigated the expression levels of cell surface lipoprotein receptors and their functional contributions toward intracellular lipid accumulation; these include very low density lipoprotein receptor (VLDL-R), low density lipoprotein receptor-related protein (LRP), and heparan sulfate proteoglycans (HSPG).
Results: We found that expression of these three lipoprotein receptors increased 5-fold, 2-fold, and 2.
It has been proposed that clearance of cholesterol-enriched very low density lipoprotein (VLDL) particles occurs through a multistep process beginning with their initial binding to cell-surface heparan sulfate proteoglycans (HSPG), followed by their uptake into cells by a receptor-mediated process that utilizes members of the low density lipoprotein receptor (LDLR) family, including the low density lipoprotein receptor-related protein (LRP). We have further explored the relationship between HSPG binding of VLDL and its subsequent internalization by focusing on the LRP pathway using a cell line deficient in LDLR. In this study, we show that LRP and HSPG are part of a co-immunoprecipitable complex at the cell surface demonstrating a novel association for these two cell surface receptors.
View Article and Find Full Text PDF