Publications by authors named "Larissa C Richards"

α-Diketones such as diacetyl (2,3-butanedione) and 2,3-pentanedione are generated during the roasting and fermentation of foods and are also used as flavoring compounds. Exposure to these compounds has been associated with obliterative bronchiolitis in workers. We report indoor air concentrations of diacetyl and 2,3-pentanedione, as well as acetoin (3-hydroxy-2-butanone), in several small coffee roasteries and breweries using standard integrated air sampling sorbent tubes followed by gas chromatography tandem mass spectrometry as well as the first use of on-site continuous real-time proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS).

View Article and Find Full Text PDF

Microplastics in the environment are an emerging concern due to impacts on human and environmental health. In addition to direct effects on biota, microplastics influence the fate and distribution of trace organic contaminants through sorption and transport. Environmental weathering may influence the rate and extent of chemical sorption.

View Article and Find Full Text PDF

Crude oil spills have well-documented, deleterious impacts on the hydrosphere. In addition to macroscopic effects on wildlife and waterscapes, several classes of petroleum derived compounds, such as naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs), may be released into the water and present aquatic contamination hazards. The concentrations of these contaminants may be affected by both oil type and water chemistry.

View Article and Find Full Text PDF

The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis.

View Article and Find Full Text PDF