Mutations resulting in decreased activity of p53 tumor suppressor protein promote tumorigenesis. P53 protein levels are tightly regulated through the Ubiquitin Proteasome System (UPS). Several E3 ligases were shown to regulate p53 stability, including MDM2.
View Article and Find Full Text PDFUnlabelled: XIAP, the most potent mammalian inhibitor of apoptosis protein (IAP), critically restricts developmental culling of sympathetic neuronal progenitors, and is correspondingly overexpressed in most MYCN-amplified neuroblastoma tumors. Because apoptosis-related protein in the TGFβ signaling pathway (ARTS) is the only XIAP antagonist that directly binds and degrades XIAP, we evaluated the preclinical effectiveness and tolerability of XIAP antagonism as a novel targeting strategy for neuroblastoma. We found that antagonism of XIAP, but not other IAPs, triggered apoptotic death in neuroblastoma cells.
View Article and Find Full Text PDFApoptosis related protein in TGF-β signaling pathway (ARTS) was originally discovered in cells undergoing apoptosis in response to TGF-β, but ARTS also acts downstream of many other apoptotic stimuli. ARTS induces apoptosis by antagonizing the anti-apoptotic proteins XIAP and Bcl-2. Here we identified the pro-apoptotic Sept4/ARTS gene as a p53-responsive target gene.
View Article and Find Full Text PDFDrug Resist Updat
September 2020
The cytotoxic effect of anti-cancer drugs relies on their ability to induce programmed cell death known as apoptosis. Evading apoptosis is a common characteristic of cancer cells and it is linked to both carcinogenesis and anticancer drug resistance. To escape apoptosis, cancer cells often express high levels of anti-apoptotic proteins and become "addicted "to them for their survival.
View Article and Find Full Text PDFMany human cancers over-express B cell lymphoma 2 (Bcl-2) or X-linked inhibitor of apoptosis (IAP) proteins to evade cell death. The pro-apoptotic ARTS (Sept4_i2) protein binds directly to both Bcl-2 and XIAP and promotes apoptosis by stimulating their degradation via the ubiquitin-proteasome system (UPS). Here we describe a small molecule, A4, that mimics the function of ARTS.
View Article and Find Full Text PDFARTS (Sept4_i2) is a pro-apoptotic protein and a product of the Sept4 gene. ARTS acts upstream of mitochondria to initiate caspase activation. ARTS induces apoptosis by specifically binding XIAP and allowing de-repression of active caspases required for Mitochondrial Outer Membrane Permeabilzation (MOMP).
View Article and Find Full Text PDFInhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes.
View Article and Find Full Text PDFARTS (Sept4_i2) is a pro-apoptotic mitochondrial tumor suppressor protein which binds to and causes degradation of XIAP (X-linked inhibitor of apoptosis). We recently showed that ARTS brings XIAP into close proximity to Bcl-2, creating a complex which enables degradation of both these major anti-apoptotic proteins and promotes apoptosis. The possible therapeutic implications are discussed here.
View Article and Find Full Text PDFThe International Conference on Cell Death in Cancer and Toxicology 2018 (February 20-22, 2018) provided an international forum for scientific collaborations across multiple disciplines in cancer, cell death, and toxicology. During the three-day symposium, researchers and clinicians shared recent advances in basic, clinical, and translational research in cancer. Several student poster abstracts were selected for platform talks and many young investigators participated in the meeting.
View Article and Find Full Text PDFHigh grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer and it is now widely accepted that this disease often originates from the fallopian tube epithelium. PAX8 is a fallopian tube lineage marker with an essential role in embryonal female genital tract development. In the adult fallopian tube, PAX8 is expressed in the fallopian tube secretory epithelial cell (FTSEC) and its expression is maintained through the process of FTSEC transformation to HGSC.
View Article and Find Full Text PDFWe describe a mechanism by which the anti-apoptotic B cell lymphoma 2 (Bcl-2) protein is downregulated to induce apoptosis. ARTS (Sept4_i2) is a tumor suppressor protein that promotes cell death through specifically antagonizing XIAP (X-linked inhibitor of apoptosis). ARTS and Bcl-2 reside at the outer mitochondrial membrane in living cells.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a movement neurodegenerative disorder characterized by death of dopaminergic neurons in the substantia nigra pars compacta of the brain that leads to movement impairments including bradykinesia, resting tremor, postural instability and rigidity. Mutations in several genes have been associated with familial PD, such as parkin, pink, DJ-1, LRKK2 and α-synuclein. Lately, mutations in the GBA gene were recognized as a major cause for the development of PD.
View Article and Find Full Text PDFParkinson's disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD.
View Article and Find Full Text PDFInhibitor of apoptosis (IAPs) proteins are characterized by the presence of evolutionarily conserved baculoviral inhibitor of apoptosis repeat (BIR) domains, predominantly known for their role in inhibiting caspases and, thereby, apoptosis. We have shown previously that multi-BIR domain-containing IAPs, cellular IAPs, and X-linked IAP can control tumor cell migration by directly regulating the protein stability of C-RAF kinase. Here, we extend our observations to a single BIR domain containing IAP family member melanoma-IAP (ML-IAP).
View Article and Find Full Text PDFPurpose: XIAP [X-linked inhibitor of apoptosis (IAP) protein] is the best characterized mammalian caspase inhibitor. XIAP is frequently overexpressed in a variety of human tumors, and genetic inactivation of XIAP in mice protects against lymphoma. Therefore, XIAP is an attractive target for anticancer therapy.
View Article and Find Full Text PDFARTS (Sept4_i2) is a mitochondrial pro-apoptotic tumor suppressor protein. In response to apoptotic signals, ARTS translocates to the cytosol where it promotes caspase activation through caspase de-repression and proteasome mediated degradation of X-linked Inhibitor of Apoptosis Protein (XIAP). Here we show that XIAP regulates the levels of ARTS by serving as its ubiquitin ligase, thereby providing a potential feedback mechanism to protect against unwanted apoptosis.
View Article and Find Full Text PDFRecent studies have revealed that cell death stimuli can trigger programmed necrosis, necroptosis. Receptor-interacting serine-threonine kinase family RIP plays a crucial role in regulating the switch between apoptosis and necroptosis. Two studies now describe a novel RIP1 containing ~2 MDa 'Ripoptosome' complex assembled in the cytosol to mediate both apoptosis and necroptosis in response to genotoxic stress and TLR3 stimulation.
View Article and Find Full Text PDFApoptosis related protein in TGF-β signaling pathway (ARTS/septin 4 isoform 2) hereforth referred to as ARTS, was originally found to promote apoptosis induced by TGF-β, but later was shown to promote apoptosis induced by a wide variety of apoptotic stimuli. In vivo and in vitro studies revealed that ARTS-induced apoptosis is mainly executed through direct binding and antagonizing XIAP. High levels of XIAP are found in many types of cancers and often correlate with poor prognosis.
View Article and Find Full Text PDFARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain.
View Article and Find Full Text PDFCell Death Differ
February 2012
ARTS (Sept4_i2) is a pro-apoptotic tumor suppressor protein that functions as an antagonist of X-linked IAP (XIAP) to promote apoptosis. It is generally thought that mitochondrial outer membrane permeabilization (MOMP) occurs before activation of caspases and is required for it. Here, we show that ARTS initiates caspase activation upstream of MOMP.
View Article and Find Full Text PDFThe human Septin 4 gene (Sept4) encodes two major protein isoforms; Sept4_i1 (H5/PNUTL2) and Sept4_i2/ARTS. Septins have been traditionally studied for their role in cytokinesis and their filament-forming abilities, but subsequently have been implicated in diverse functions, including membrane dynamics, cytoskeletal reorganization, vesicle trafficking, and tumorigenesis. ARTS is localized at mitochondria and promotes programmed cell death (apoptosis).
View Article and Find Full Text PDFARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored.
View Article and Find Full Text PDFInhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development.
View Article and Find Full Text PDFTraumatic brain injury (TBI) represents a leading cause of death and morbidity, as well as a considerable social and economical burden in western countries, and has thus emerged as a formidable therapeutic challenge. Yet despite tremendous efforts enlightening the mechanisms of neuronal death, hopes for the "magic bullet" have been repeatedly deceived, and TBI management has remained focused on the control of increased intracranial pressure. Indeed, impairment of cerebral metabolism is traditionally attributed to impaired oxygen delivery mediated by reduced cerebral perfusion in the swollen cerebral parenchyma.
View Article and Find Full Text PDF