The in vitro detection of the neural biophysical chemistry of populations of neurons is an important emerging area of research. This critical review describes the current methodologies, challenges and future prospects for this exciting field of research. There are different classes of techniques for the study of neuron-based systems.
View Article and Find Full Text PDFKelvin and acoustic fields of high-frequency have been employed in the non-invasive investigation of immortalized hypothalamic neurons, in order to assess their response to different concentrations of specific drugs, toxins, a stress-reducing hormone and neurotrophic factors. In an analytical systems biology approach, this work constitutes a first study of living neuron cultures by scanning Kelvin nanoprobe (SKN) and thickness shear mode (TSM) acoustic wave techniques. N-38 hypothalamic mouse neurons were immobilized on the gold electrode of 9 MHz TSM acoustic wave devices and gold-coated slides for study by SKN.
View Article and Find Full Text PDFThe Kelvin nanoprobe is an extremely sensitive instrument capable of discerning subtle molecular interactions using vibrating electromagnetic and acoustic fields. It is based on the measurement of a fundamental material property, the work function. Modulation of this substrate parameter is caused by the adsorption or desorption of molecules, oxidation, corrosion, contamination, mechanical stress, illumination, temperature changes, electrostatic charging, surface treatment, attached dipolar structures and/or the immobilization of biomolecules.
View Article and Find Full Text PDFThe surface properties of GaPO4 have been studied by secondary ion mass spectrometry, X-ray photoelectron spectroscopy and electromagnetic acoustic wave excitation in order to explore the potential of this relatively new piezoelectric material as a biosensor. The X-ray photoelectron spectrum of the substrate shows a Ga-rich surface (Ga:P = 1.4), while the negative secondary ion mass spectrum is similar to that of other phosphates, with PO3- and PO2- being the main fragments derived from the substrate.
View Article and Find Full Text PDFA high-resolution scanning Kelvin nanoprobe is introduced as an alternative technique to the conventional fluorescence and mass spectrometric detection methods currently employed in nucleic acid and protein microarray technology. The new instrument is capable of the highly sensitive discernment of surface biochemical events taking place at molecular level such as nucleic acid hybridization and antibody-antigen interaction. The method involves measurement of changes in work function and surface potential instigated by such interactions.
View Article and Find Full Text PDFThe detection of the initial changes in the surface microstructure and local chemical properties connected to the corrosion process is possible using a high-resolution scanning Kelvin nanoprobe. This technique provides the simultaneous imaging of the topographical features and potential distribution across a surface at the sub-micrometer level. Nanoprobe measurements performed on samples of Al, Cu, Fe, Ni, Ag and Pt before and after exposure to different corroding solutions reveal the significant changes that take place during the first stages of the corrosion process.
View Article and Find Full Text PDFSurface-immobilized protein species deposited in the microarray format have been detected by time-of-flight secondary ion mass spectrometry and by scanning Kelvin nanoprobe. The former method was used to examine the nature of protein deposition on amine-coated glass slides and gold substrates in preparation for Kelvin measurements. Both gallium and SF(5)(+) ion sources were employed to produce positive and negative ion spectra of amino acids and polypeptides.
View Article and Find Full Text PDFSingle strand thiolated oligonucleotide (25-mer) was printed onto chemically modified glass and silicon surfaces. Confirmation of the level of attachment attained in each case was effected through detection by conventional confocal fluorescence microscopy. Both positive-ion and negative ion imaging time-of-flight mass spectra were recorded for the visualization of micro-patterned oligonucleotide arrays.
View Article and Find Full Text PDF