Publications by authors named "Larisa Yu Nesterova"

Bacterial persistence coupled with biofilm formation is directly associated with failure of antibiotic treatment of tuberculosis. We have now identified 4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-yl)Pentanoic acid (DMNP), a synthetic diterpene analogue, as a lead compound that was capable of suppressing persistence and eradicating biofilms in Mycobacterium smegmatis. By using two reciprocal experimental approaches - Δrel and ΔrelZ gene knockout mutations versus rel and relZ overexpression technique - we showed that both Rel and RelZ (p)ppGpp synthetases are plausible candidates for serving as targets for DMNP.

View Article and Find Full Text PDF

strains isolated from case of colibacillosis in Russian poultry farms in the region of Perm Krai were analyzed for their sensitivity to main antibiotics and bacteriocins. Sensitivity profiles for 9 antibiotics and 20 bacteriocins were determined with the disc diffusion method and the overlay test, respectively. Further, with the PCR the presence of several and integron 1 genes was revealed and the phylogenetic group for each strain determined.

View Article and Find Full Text PDF

Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro.

View Article and Find Full Text PDF

Bactericidal antibiotics (fluoroquinolones, aminoglycosides and cephalosporins) at their sublethal concentrations were able to produce hydroxyl radicals, hydrogen peroxide and superoxide anions (ROS) in Escherichia coli cells, which resulted in damage to proteins and DNA. The cells responded to oxidative stress by a 2-3-fold increase in cell polyamines (putrescine, spermidine) produced as a consequence of upregulation of ornithine decarboxylase (ODC). Relief of oxidative stress by cessation of culture aeration or addition of antioxidants substantially diminished or even completely abolished polyamine accumulation observed in response to antibiotics.

View Article and Find Full Text PDF