Publications by authors named "Larisa Yeomans"

PDHK1 is a non-canonical Ser/Thr kinase that negatively regulates the pyruvate dehydrogenase complex (PDC), restricting entry of acetyl-CoA into the tricarboxylic acid (TCA) cycle and downregulating oxidative phosphorylation. In many glycolytic tumors, PDHK1 is overexpressed to suppress activity of the PDC and cause a shift in metabolism toward an increased reliance on glycolysis (the Warburg effect). Genetic studies have shown that knockdown or knockout of PDHK1 reverts this phenotype and inhibits tumor growth in vitro and in vivo, but chemical tools to pharmacologically validate and build upon these data are lacking.

View Article and Find Full Text PDF

Rifampin (RMP), a very potent inhibitor of the (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIF) MTB strains. There is a clear and pressing need for improved TB therapies.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus- (MTB) co-infection]; and the existence of RIF-resistant (RIF) MTB strains.

View Article and Find Full Text PDF

Objectives: Current standard of care imaging, cytology, or cystic fluid analysis cannot reliably differentiate malignant from benign pancreatic cystic neoplasms. This study sought to determine if the metabolic profile of cystic fluid could distinguish benign and malignant lesions, as well as mucinous and non-mucinous lesions.

Methods: Metabolic profiling by untargeted mass spectrometry and quantitative nuclear magnetic resonance was performed in 24 pancreatic cyst fluid from surgically resected samples with pathological diagnoses and clinicopathological correlation.

View Article and Find Full Text PDF

The human metabolome may vary based on age, over time, and in the presence of viral carriage and bacterial colonization-a common scenario in children. We used nuclear magnetic resonance spectroscopy to identify and quantify urinary metabolites of children without signs or symptoms of respiratory illness. A urine sample and two nasopharyngeal swabs were collected to test for respiratory viral pathogens and colonization by ().

View Article and Find Full Text PDF

Patients with schizophrenia are at high risk of pre-mature mortality due to cardiovascular disease (CVD). Our group has completed studies in pharmacogenomics and metabolomics that have independently identified perturbations in one-carbon metabolism as associated with risk factors for CVD in this patient population. Therefore, this study aimed to use genetic and metabolomic data to determine the relationship between folate pharmacogenomics, one-carbon metabolites, and insulin resistance as measured using the homeostatic model assessment for insulin resistance (HOMA-IR) as a marker of CVD.

View Article and Find Full Text PDF

Studies demonstrate that small molecule targeting of atypical protein kinase C (aPKC) may provide an effective means to control vascular permeability, prevent edema, and reduce inflammation providing novel and important alternatives to anti-VEGF therapies for certain blinding eye diseases. Based on a literature tricyclic thieno[2,3-d]pyrimidine lead (1), an ATP-competitive inhibitor of the aPKC iota (ι) and aPKC zeta (ζ) isoforms, we have synthesized a small series of compounds in 1-2 steps from a readily available chloro intermediate. A single pyridine congener was also made using 2D NMR to assign regiochemistry.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a systemic condition that is too complex to be assessed by lung function alone. Metabolomics has the potential to help understand the mechanistic underpinnings that contribute to COPD pathogenesis. Since blood metabolomics may be affected by sex and body mass index (BMI), the aim of this study was to determine the metabolomic variability in male smokers with and without COPD who have a narrow BMI range.

View Article and Find Full Text PDF

Metabolomics is an emerging science that can inform pathogenic mechanisms behind clinical phenotypes in COPD. We aimed to understand disturbances in the serum metabolome associated with respiratory outcomes in ever-smokers from the SPIROMICS cohort. We measured 27 serum metabolites, mostly amino acids, by H-nuclear magnetic resonance spectroscopy in 157 white ever-smokers with and without COPD.

View Article and Find Full Text PDF

Purpose: Approximately 25% of breast cancer patients experience treatment delays or discontinuation due to paclitaxel-induced peripheral neuropathy (PN). Currently, there are no predictive biomarkers of PN. Pharmacometabolomics is an informative tool for biomarker discovery of drug toxicity.

View Article and Find Full Text PDF

Our objective was to illustrate the potential of metabolomics to identify novel biomarkers of illness severity in a child with fatal necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). We present a case report with two control groups and a metabolomics analysis: an infant with fatal MRSA pneumonia, four children with influenza pneumonia (pneumonia control group), and seven healthy children with no known infections (healthy control group). Urine samples were collected from all children.

View Article and Find Full Text PDF

Prolonged (8 weeks) oral administration of clofazimine results in a profound pharmacodynamic response-bioaccumulation in macrophages (including Kupffer cells) as intracellular crystal-like drug inclusions (CLDIs) with an associated increase in interleukin-1 receptor antagonist production. Notably, CLDI formation in Kupffer cells concomitantly occurs with the formation of macrophage-centric granulomas. Accordingly, we sought to understand the impact of these events on host metabolism using H-nuclear magnetic resonance metabolomics.

View Article and Find Full Text PDF

Objective: Age is a significant risk factor for the development of venous thrombosis (VT), but the mechanism(s) that underlie this risk remain(s) undefined and poorly understood. Aging is known to adversely influence inflammation and affect metabolism. Untargeted metabolomics permits an agnostic assessment of the physiological landscape and lends insight into the mechanistic underpinnings of clinical phenotypes.

View Article and Find Full Text PDF

In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile.

View Article and Find Full Text PDF

Serum is a common sample of convenience for metabolomics studies. Its processing time can be lengthy and may result in the loss of metabolites including those of red blood cells (RBCs). Unlike serum, whole blood (WB) is quickly processed, minimizing the influence of variable hemolysis while including RBC metabolites.

View Article and Find Full Text PDF

In mammals, highly lipophilic small molecule chemical agents can accumulate as inclusions within resident tissue macrophages. In this context, we characterized the biodistribution, chemical composition, and structure of crystal-like drug inclusions (CLDIs) formed by clofazimine (CFZ), a weakly basic lipophilic drug. With prolonged oral dosing, CFZ exhibited a significant partitioning with respect to serum and fat due to massive bioaccumulation and crystallization in the liver and spleen.

View Article and Find Full Text PDF

We have previously described a cyclic tetrapeptide, 1, that displays μ opioid receptor (MOPr) agonist and δ opioid receptor (DOPr) antagonist activity, a profile associated with a reduced incidence of opioid tolerance and dependence. Like many peptides, 1 has poor bioavailability. We describe here an analogue of 1 with an added C-terminal β-glucosylserine residue, Ser(β-Glc)NH2, a modification that has previously been shown to improve bioavailability of opioid peptides.

View Article and Find Full Text PDF

Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia.

View Article and Find Full Text PDF

We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a μ opioid receptor (MOR) agonist, δ opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood-brain barrier.

View Article and Find Full Text PDF

Phosphorylation of l-serine-containing enkephalin analogs has been explored as an alternative to glycosylation in an effort to increase blood-brain barrier permeability and CNS bioavailability of peptide pharmacophores. Two enkephalin-based peptides were modified for these studies, a set related to DTLES, a mixed μ/δ-agonist, and one related to DAMGO, a highly selective μ-agonist. Each unglycosylated peptide was compared to its phosphate, its mono-benzylphosphate ester, and its β-d-glucoside.

View Article and Find Full Text PDF

A series of mu-agonist DAMGO analogs were synthesized and pharmacologically characterized to test the 'biousian' hypothesis of membrane hopping. DAMGO was altered by incorporating moieties of increasing water solubility into the C-terminus via carboxamide and simple glycoside additions. The hydrophilic C-terminal moieties were varied from glycinol in DAMGO (1) to l-serine amide (2), l-serine amide beta-d-xyloside (3), l-serine amide beta-d-glucoside (4), and finally to l-serine amide beta-lactoside (5).

View Article and Find Full Text PDF

A series of glycosylated endorphin analogues designed to penetrate the blood-brain barrier (BBB) have been studied by circular dichroism and by 2D-NMR in the presence of water; TFE/water; SDS micelles; and in the presence of both neutral and anionic bicelles. In water, the glycopeptides showed only nascent helix behavior and random coil conformations. Chemical shift indices and nuclear Overhauser effects (NOE) confirmed helices in the presence of membrane mimics.

View Article and Find Full Text PDF