Publications by authors named "Larisa V Danilenkova"

Drosophila melanogaster is a popular model organism in the study of memory due to a wide arsenal of methods used to analyze neuronal activity. The most commonly used tests in research of behavioral plasticity are shock avoidance associated with chemosensory cues and courtship suppression after mating failure. Many authors emphasize the value of courtship suppression as a model of behavior most appropriate to natural conditions.

View Article and Find Full Text PDF

Using an original method, we have received with a deficiency including a complete sequence of gene. In this report, we describe the behavioural features of this new deletion mutant. There were no serious deviations from the normal mating behaviour in flies with the deletion, but the behaviour of deletion mutants still had some features.

View Article and Find Full Text PDF

Here, we describe the longevity and locomotor behavior of senescent Drosophila males with altered expression of Dgp-1 gene. In comparison with the wild-type Canton-S (CS) males, six characteristics of the phenotype of Dgp-1[843k] mutant were found: (1) low expression of isoform A; (2) augmented expression of isoform B; (3) reduction in the mean lifespan; (4) decrease in the running speed in 3-day-old flies; (5) maintenance of a high run frequency in senescent flies; and (6) resistance to heat stress manifested as maintenance of a high run frequency at 29 °C. After cessation of "cantonization" process, mean lifespan of the mutant males drifted from low to high values finally exceeding that for CS.

View Article and Find Full Text PDF

To study the central pattern generators functioning, previously we identified genes, whose neurospecific knockdowns led to deviations in the courtship song of Drosophila melanogaster males. Reduced expression of the gene CG15630 caused a decrease in the interpulse interval. To investigate the role of CG15630, which we have called here fipi (factor of interpulse interval), in the courtship song production, at first, we have characterized fipi transcripts and protein (FIPI) in the mutant flies carrying P insertion and deletions in this gene and in flies with its RNAi knockdown.

View Article and Find Full Text PDF

Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song.

View Article and Find Full Text PDF