Publications by authors named "Laria Rodriguez-Quesada"

Article Synopsis
  • Researchers developed starch-based porous cryogels aimed at tissue engineering, combining materials like κ-carrageenan, PVA, and SbQ.
  • They created a conductive version of the cryogel by oxidizing EDOT to enhance electrical properties, utilizing iron(III) p-toluenesulfonate.
  • Tests showed that varying biopolymer content could effectively tune the cryogel's mechanical properties, with κ-carrageenan enhancing stiffness and PVA acting as a plasticizer, while cross-linking with PVA-SBQ further improved these properties.
View Article and Find Full Text PDF

In this work, the effect of iron(III) in the preparation of a conductive porous composite using a biomass waste-based starch template was evaluated. Biopolymers are obtained from natural sources, for instance, starch from potato waste, and its conversion into value-added products is highly significant in a circular economy. The biomass starch-based conductive cryogel was polymerized via chemical oxidation of 3,4-ethylenedioxythiophene (EDOT) using iron(III) p-toluenesulfonate as a strategy to functionalize porous biopolymers.

View Article and Find Full Text PDF

The following data provide evidence of the green functionalization process of a cellulose substrate by gamma radiation to be used as template in the preparation of photocatalyst composites. Functionalized cellulose, by gamma radiation treatment, improved its stability in water and exhibited a reduced size. Our data showed an intensification of carbonyl groups signal and a decrease in the thermal stability of the cellulose as result of the gamma radiation dose.

View Article and Find Full Text PDF