Publications by authors named "Larbouret C"

Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) shows treatment resistance due to a dense stroma and immunosuppressive microenvironment, prompting research into combining FOLFIRINOX chemotherapy with VE-822, a DNA repair inhibitor.* -
  • The study utilized PDAC spheroid models and mouse models to analyze the combination's effects on tumor growth and the immune and fibrotic environment, revealing a strong synergistic effect and increased apoptosis.* -
  • Results indicated that the FOLFIRINOX and VE-822 combo significantly inhibited tumor growth more than FOLFIRINOX alone, improved immune cell activity, and modified the tumor microenvironment, suggesting a potential strategy to enhance treatment effectiveness.*
View Article and Find Full Text PDF

The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations.

View Article and Find Full Text PDF

Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management.

View Article and Find Full Text PDF

Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 4 (HER4) isoforms have oncogenic or tumor suppressor functions depending on their susceptibility to proteolytic cleavage and HER4 intracellular domain (4ICD) translocation. Here, we report that the neuregulin 1 (NRG1) tumor suppressor mechanism through the HER4 JMa/CYT1 isoform can be mimicked by the agonist anti-HER4 Ab C6. Neuregulin 1 induced cleavage of poly(ADP-ribose) polymerase (PARP) and sub-G DNA fragmentation, and also reduced the metabolic activity of HER3 /HER4 cervical (C-33A) and ovarian (COV318) cancer cells.

View Article and Find Full Text PDF

Purpose: The outcome of locally advanced cervical cancer (LACC) is dismal. Biomarkers are needed to individualize treatments and to improve patient outcomes. Here, we investigated whether coexpression of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 3 (HER3) could be an outcome prognostic biomarker, and whether targeting both EGFR and HER3 with a dual antibody (MEHD7945A) enhanced ionizing radiation (IR) efficacy.

View Article and Find Full Text PDF

Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical effectiveness remains limited in some cases. Associations of antibodies binding to the same target (homo-combination) or to several different targets (hetero-combination), thereby mimicking a polyclonal humoral immune response, have demonstrated a therapeutic improvement in pre-clinical and clinical trials, mainly in the field of oncology and infectious diseases. The combinations increase the efficacy of the biological responses and override resistance mechanisms observed with antibody monotherapy.

View Article and Find Full Text PDF

Background: HER3/ErbB3 receptor deletion or blockade leads to tumor cell apoptosis, whereas its overexpression confers anti-cancer drug resistance through upregulation of protective mechanisms against apoptosis. We produced the anti-HER3 antibody 9F7-F11 that promotes HER3 ubiquitination and degradation via JNK1/2-dependent activation of the E3 ubiquitin ligase ITCH, and that induces apoptosis of cancer cells. Cellular FLICE-like inhibitory protein (c-FLIP) is a key regulator of apoptotic pathways.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer characterized by poor response to chemotherapy and radiotherapy due to the lack of efficient therapeutic tools and early diagnostic markers. We previously generated the nonligand competing anti-HER3 antibody 9F7-F11 that binds to pancreatic tumor cells and induces tumor regression in vivo in experimental models. Here, we asked whether coupling 9F7-F11 with a radiosensitizer, such as monomethylauristatin E (MMAE), by using the antibody-drug conjugate (ADC) technology could improve radiation therapy efficacy in PDAC.

View Article and Find Full Text PDF

Background: The irinotecan-induced phosphokinome changes in colorectal cancer (CRC) cells were used to guide the selection of targeted agents to be tested in combination with irinotecan.

Methods: Phosphokinome profiling with peptide arrays of tumour samples from nude mice xenografted with HT29 cells and treated or not with an effective dose of irinotecan was used to identify signalling pathways activated by irinotecan treatment. Then, drugs targeting these pathways were combined in vitro with irinotecan to test potential synergistic effect.

View Article and Find Full Text PDF

Neuregulin 1 (NRG1), a ligand for HER3 and HER4 receptors, is secreted by both pancreatic tumor cells (PC) and cancer-associated fibroblasts (CAFs), the latter representing the most abundant compound of pancreatic stroma. This desmoplastic stroma contributes to Pancreatic Ductal Adenocarcinoma (PDAC) aggressiveness and therapeutic failure by promoting tumor progression, invasion and resistance to chemotherapies. In the present work, we aimed at disrupting the complex crosstalk between PC and CAF in order to prevent tumor cell proliferation.

View Article and Find Full Text PDF

Herein we describe the synthesis and evaluation of four novel HER2-targeting, cathepsin B-sensitive antibody-drug conjugates bearing a monomethylauristatin E (MMAE) cytotoxic payload, constructed via the conjugation of cleavable linkers to trastuzumab using a site-specific bioconjugation methodology. These linkers vary by both cleavable trigger motif and hydrophilicity, containing one of two cathepsin B sensitive dipeptides (Val-Cit and Val-Ala), and engendered with either hydrophilic or hydrophobic character via application of a PEG spacer. Through evaluation of physical properties, in vitro cytotoxicity, and receptor affinity of the resulting antibody-drug conjugates (ADCs), we have demonstrated that while both dipeptide triggers are effective, the increased hydrophobicity of the Val-Ala pair limits its utility within this type of linker.

View Article and Find Full Text PDF

Exploratory clinical trials using therapeutic anti-HER3 antibodies strongly suggest that neuregulin (NRG1; HER3 ligand) expression at tumor sites is a predictive biomarker of anti-HER3 antibody efficacy in cancer. We hypothesized that in NRG1-expressing tumors, where the ligand is present before antibody treatment, anti-HER3 antibodies that do not compete with NRG1 for receptor binding have a higher receptor-neutralizing action than antibodies competing with the ligand for binding to HER3. Using time-resolved-fluorescence energy transfer (TR-FRET), we demonstrated that in the presence of recombinant NRG1, binding of 9F7-F11 (a nonligand-competing anti-HER3 antibody) to HER3 is increased, whereas that of ligand-competing anti-HER3 antibodies (H4B-121, U3-1287, Ab#6, Mab205.

View Article and Find Full Text PDF

AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC). We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with expression are enriched in EMT, migration, and invasion signaling pathways.

View Article and Find Full Text PDF

Background: Cetuximab, a monoclonal antibody against EGFR used for the treatment of colorectal cancer (CRC), is ineffective in many patients. The aim of this study was to identify the signalling pathways activated by cetuximab in CRC cells and define new biomarker of response.

Methods: We used in vitro, in vivo models and clinical CRC samples to assess the role of p38 and FOXO3a in cetuximab mechanism of action.

View Article and Find Full Text PDF

We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, breast and prostate cancer cell lines was driven mainly by the itchy E3 ubiquitin ligase (ITCH/AIP4).

View Article and Find Full Text PDF

To improve treatment efficacy, we decided to simultaneously target HER1 and HER2 with trastuzumab and cetuximab. Following promising preclinical results, we conducted a phase 1-2 trial in advanced pancreatic cancer patients after first-line gemcitabine-based chemotherapy failure. In this single-arm, non-randomized, multicenter trial, patients received weekly cetuximab (400mg/m², then 250mg/m²).

View Article and Find Full Text PDF

The human EGF receptor (HER/EGFR) family of receptor tyrosine kinases serves as a key target for cancer therapy. Specifically, EGFR and HER2 have been repeatedly targeted because of their genetic aberrations in tumors. The therapeutic potential of targeting HER3 has long been underestimated, due to relatively low expression in tumors and impaired kinase activity.

View Article and Find Full Text PDF

The anti-HER2 antibody pertuzumab inhibits HER2 dimerization and affects HER2/HER3 dimer formation and signaling. As HER3 and its ligand neuregulin are implicated in pancreatic tumorigenesis, we investigated whether HER3 expression could be a predictive biomarker of pertuzumab efficacy in HER2low-expressing pancreatic cancer. We correlated in vitro and in vivo HER3 expression and neuregulin dependency with the inhibitory effect of pertuzumab on cell viability and tumor progression.

View Article and Find Full Text PDF

AXL receptor tyrosine kinase (RTK) is implicated in proliferation and invasion of many cancers, particularly in pancreatic ductal adenocarcinoma (PDAC), for which new therapeutic options are urgently required. We investigated whether inhibition of AXL activity by specific monoclonal antibodies (mAbs) is efficient in limiting proliferation and migration of pancreatic cancer cells. Expression of AXL was evaluated by immunohistochemistry in 42 PDAC.

View Article and Find Full Text PDF

Blockade of the human epidermal growth factor receptor 3 (HER3) and of the downstream phosphatidylinositide 3-kinase (PI3K)/AKT pathway is a prerequisite for overcoming drug resistance and to develop novel treatments for cancers that are not eligible for the currently approved targeted therapies. To this end, we generated specific antibodies (Abs) against domain 1 (D1) and domain 3 (D3) of HER3 that recognize epitopes that do not overlap with the neuregulin-binding site. The fully human H4B-121 Ab and the mouse monoclonal Abs 16D3-C1 and 9F7-F11 inhibited tumor growth in nude mice xenografted with epidermoid, pancreatic, or triple-negative breast cancer cells.

View Article and Find Full Text PDF

Following the development of targeted therapies against EGFR and HER2, two members of the human epidermal receptor (HER) family of receptor tyrosine kinases, much interest has been focused on their expression in tumors. However, knowing the expression levels of individual receptors may not be sufficient to predict drug response. Here, we describe the development of antibody-based time-resolved Förster resonance energy transfer (TR-FRET) assays for the comprehensive analysis not only of EGFR and HER2 expression in tumor cryosections, but also of their activation through quantification of HER homo- or heterodimers.

View Article and Find Full Text PDF