Publications by authors named "Larbi Amazit"

Article Synopsis
  • Primary generalized glucocorticoid resistance syndrome (GGRS) is a rare condition linked to a mutation in the NR3C1 gene, specifically a missense variant affecting the Glucocorticoid Receptor's DNA Binding Domain.
  • A case study detailed a 59-year-old man with high cortisol levels and a misdiagnosis of Cushing disease, ultimately leading to a correct diagnosis of GGRS at age 68.
  • Functional tests on the identified gene variant indicated it had significantly reduced transcriptional activity, emphasizing the need for increased awareness of GGRS to prevent misdiagnosis and harmful treatments.
View Article and Find Full Text PDF

Objective: Glucocorticoid resistance is a rare endocrine disease caused by variants of the NR3C1 gene encoding the glucocorticoid receptor (GR). We identified a novel heterozygous variant (GRR569Q) in a patient with uncommon reversible glucocorticoid resistance syndrome.

Methods: We performed ex vivo functional characterization of the variant in patient fibroblasts and in vitro through transient transfection in undifferentiated HEK 293T cells to assess transcriptional activity, affinity, and nuclear translocation.

View Article and Find Full Text PDF

Glucocorticoids (GCs) exert potent antiproliferative and anti-inflammatory properties, explaining their therapeutic efficacy for skin diseases. GCs act by binding to the GC receptor (GR) and the mineralocorticoid receptor (MR), co-expressed in classical and non-classical targets including keratinocytes. Using knockout mice, we previously demonstrated that GR and MR exert essential nonoverlapping functions in skin homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) is a serious disease marked by problems in lung blood vessels and endothelial cell function, leading to worsening health.
  • Researchers found lower levels of cAbl, an important protein involved in cell regulation, in both human PAH patients and animal models, indicating a potential link to the disease's progression.
  • Manipulating cAbl levels in endothelial cells affects their DNA stability and ability to form new blood vessel structures, suggesting that restoring cAbl function could help improve lung health in PAH.
View Article and Find Full Text PDF

Background: GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome is caused by aberrant expression of the GIP receptor in adrenal lesions. The bilateral nature of this disease suggests germline genetic predisposition. We aimed to identify the genetic driver event responsible for GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome.

View Article and Find Full Text PDF

Recent advances in genetic analysis technologies such as next-generation sequencing (NGS) have considerably increased the incidental discovery of genetic abnormalities. Six heterozygous missense mutations of the human glucocorticoid receptor (GR; encoded by the gene) have been identified in the context of genetic screening of endocrine pathologies. GR, a nuclear receptor, hormone-induced transcription factor, is involved in many physiological processes.

View Article and Find Full Text PDF

Mitotane (also termed o,p'‑DDD) is the most effective therapy for advanced adrenocortical carcinoma (ACC). Mitotane‑induced dyslipidemia is treated with statins. Mitotane and statins are known to exert anti‑proliferative effects in vitro; however, the effects of statins have never been directly evaluated in patients with ACC and ACC cells, at least to the best of our knowledge.

View Article and Find Full Text PDF

The brain-derived neurotrophic factor (BDNF) is a key player in brain functions such as synaptic plasticity, stress, and behavior. Its gene structure in rodents contains 8 untranslated exons (I to VIII) whose expression is finely regulated and which spliced onto a common and unique translated exon IX. Altered Bdnf expression is associated with many pathologies such as depression, Alzheimer's disease and addiction.

View Article and Find Full Text PDF

Purpose: Primary ovarian insufficiency (POI) is a frequent disorder that affects ~1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone (FSH), leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene variants, most cases remain idiopathic.

View Article and Find Full Text PDF

Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling.

View Article and Find Full Text PDF

Mitotane (o,p'DDD), the most effective drug in adrenocortical carcinoma, concentrates into the mitochondria and impacts mitochondrial functions. To address the molecular mechanisms of mitotane action and to identify its potential target, metabolomic and lipidomic approaches as well as imaging analyses were employed in human adrenocortical H295R cells allowing identification of Mitochondria-Associated Membranes dysfunction as a critical impact of mitotane. Study of intracellular energetic metabolites by NMR spectroscopy showed that mitotane significantly decreased aspartate while concomitantly increased glutamate content in a time- and concentration-dependent manner.

View Article and Find Full Text PDF

Mineralocorticoid receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron. Herein, we decipher mechanisms by which hypotonicity increases MR expression in renal principal cells. We identify HuR (human antigen R), an mRNA-stabilizing protein, as an important posttranscriptional regulator of MR expression.

View Article and Find Full Text PDF

Aldosterone and the Mineralocorticoid Receptor (MR) control hydroelectrolytic homeostasis and alterations of mineralocorticoid signaling pathway are involved in the pathogenesis of numerous human diseases, justifying the need to decipher molecular events controlling MR expression level. Here, we show in renal cells that the RNA-Binding Protein, Human antigen R (HuR), plays a central role in the editing of MR transcript as revealed by a RNA interference strategy. We identify a novel Δ6 MR splice variant, which lacks the entire exon 6, following a HuR-dependent exon skipping event.

View Article and Find Full Text PDF
Article Synopsis
  • Generalized glucocorticoid resistance is linked to new NR3C1 mutations in patients with adrenal incidentalomas and cortisol excess—specifically R477S, Y478C, and L672P.
  • The R477S and Y478C mutations maintain normal dexamethasone binding but show reduced nuclear translocation, while the L672P mutation fails to bind glucocorticoids and remains in the cytoplasm.
  • These mutations lead to impaired transcriptional activity due to structural changes in the glucocorticoid receptor, highlighting the need for genetic screening of NR3C1 in individuals with unexplained cortisol-related disorders.
View Article and Find Full Text PDF

Study Question: What is the exact prevalence of Kisspeptin Receptor (KISS1R) mutations in the population of patients with normosmic congenital hypogonadotrophic hypogonadism (nCHH) by comparison with other genes, involved in gonadotrophin-releasing hormone (GnRH) release or action?

Summary Answer: KISS1R mutants are responsible for the nCHH phenotype in only a small minority of cases and were less prevalent than GnRH Receptor (GNRHR) mutations.

What Is Known Already: The respective prevalence of each of the genetic causes of nCHH is unclear. Large series of patients are very rare and suffer from heterogeneity of the population of CHH studied.

View Article and Find Full Text PDF

Autophagy is activated early after human cytomegalovirus (HCMV) infection but, later on, the virus blocks autophagy. Here we characterized 2 HCMV proteins, TRS1 and IRS1, which inhibit autophagy during infection. Expression of either TRS1 or IRS1 was able to block autophagy in different cell lines, independently of the EIF2S1 kinase, EIF2AK2/PKR.

View Article and Find Full Text PDF

Aldosterone regulates sodium homeostasis by activating the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily. Hyperaldosteronism leads todeleterious effects on the kidney, blood vessels, and heart. Although steroidal antagonists such as spironolactone and eplerenone are clinically useful for the treatment of cardiovascular diseases, they are associated with several side effects.

View Article and Find Full Text PDF

Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are exploring new medicines that block the progesterone receptor (PR) more effectively than current ones like mifepristone (RU486), which can have some unwanted effects.
  • They've created a new substance called APR19 that targets PR and helps to stop unwanted growth in the uterus without influencing other hormone receptors.
  • APR19 works differently than RU486 by not forming a strong bond with the receptor, making it a better option for long-lasting hormone treatments.
View Article and Find Full Text PDF

Context: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway.

Objective: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations.

View Article and Find Full Text PDF

Progesterone receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary cancer cells stably expressing PRA and/or PRB.

View Article and Find Full Text PDF

The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood.

View Article and Find Full Text PDF

Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.

View Article and Find Full Text PDF

EGF induces signal transduction between EGFR and FAK, and FAK is required for EGF-induced cell migration. It is unknown, however, what factor mediates the interaction between EGFR and FAK and leads to EGF-induced FAK phosphorylation. Here, we identify SRC-3Delta4, a splicing isoform of the SRC-3 oncogene, as a signaling adaptor that links EGFR and FAK and promotes EGF-induced phosphorylations of FAK and c-Src.

View Article and Find Full Text PDF