Publications by authors named "Lara Toy"

Article Synopsis
  • - The study focuses on developing fluorescent ligands that specifically target the intracellular allosteric binding site (IABS) of the CCR1 receptor, which is important for treating inflammation and immune diseases.
  • - Researchers designed and synthesized tetramethylrhodamine (TAMRA)-labeled ligands and introduced LT166, a versatile tool for studying CCR1 binding using a nonradioactive and high-throughput method known as NanoBRET.
  • - The findings also highlight the identification of new compounds that selectively inhibit CCR1 activity while showing potential to differentiate between various ligand interactions, paving the way for better drug discovery aimed at CCR1.
View Article and Find Full Text PDF

A conserved intracellular allosteric binding site (IABS) was recently identified at several G protein-coupled receptors (GPCRs). This target site allows the binding of allosteric modulators and enables a new mode of GPCR inhibition. Herein, we report the development of a NanoBRET-based assay platform based on the fluorescent ligand LT221 (5), to detect intracellular binding to CCR6 and CXCR1, two chemokine receptors that have been pursued as promising drug targets in inflammation and immuno-oncology.

View Article and Find Full Text PDF
Article Synopsis
  • Dysregulation of the enzymes Sirt2 and HDAC6 is linked to cancer and neurodegeneration, making them potential drug targets.
  • The study presents the creation of new inhibitors that simultaneously target both Sirt2 and HDAC6, with Mz325 identified as a strong and selective option.
  • Tests showed that Mz325 increased cell death in ovarian cancer cells more effectively than single treatments, highlighting its promise for research and therapeutic use.
View Article and Find Full Text PDF

Herein, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of CXC chemokine receptor 2 (CXCR2), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in oncology and inflammation. Starting from the cocrystallized intracellular CXCR2 antagonist 00767013 (), tetramethylrhodamine (TAMRA)-labeled CXCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CXCR2. By means of these studies, we developed Mz438 () as a high-affinity and selective fluorescent CXCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and high-throughput manner.

View Article and Find Full Text PDF

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field.

View Article and Find Full Text PDF

Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2.

View Article and Find Full Text PDF

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy.

View Article and Find Full Text PDF