Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.
View Article and Find Full Text PDFThe cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect.
View Article and Find Full Text PDFAmmonia absorption by the medullary thick ascending limb of Henle's loop (MTALH) is thought to be a critical step in renal ammonia handling and excretion in urine, in which it is the main acid component. Basolateral Na+/H+ exchangers have been proposed to play a role in ammonia efflux out of MTALH cells, which express 2 exchanger isoforms: Na+/H+ exchanger 1 (NHE1) and NHE4. Here, we investigated the role of NHE4 in urinary acid excretion and found that NHE4-/- mice exhibited compensated hyperchloremic metabolic acidosis, together with inappropriate urinary net acid excretion.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2010
Chloride intracellular channel 5 (CLIC5) and other CLIC isoforms have been implicated in a number of biological processes, but their specific functions are poorly understood. The association of CLIC5 with ezrin and the actin cytoskeleton led us to test its possible involvement in gastric acid secretion. Clic5 mutant mice exhibited only a minor reduction in acid secretion, Clic5 mRNA was expressed at only low levels in stomach, and Clic5 mutant parietal cells were ultrastructurally normal, negating the hypothesis that CLIC5 plays a major role in acid secretion.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2010
Anion secretion by colonic epithelium is dependent on apical CFTR-mediated anion conductance and basolateral ion transport. In many tissues, the NKCC1 Na(+)-K(+)-2Cl(-) cotransporter mediates basolateral Cl(-) uptake. However, additional evidence suggests that the AE2 Cl(-)/HCO(3)(-) exchanger, when coupled with the NHE1 Na(+)/H(+) exchanger or a Na(+)-HCO(3)(-) cotransporter (NBC), contributes to HCO(3)(-) and/or Cl(-) uptake.
View Article and Find Full Text PDFTo explore the functions of the anion exchanger 2 (Ae2) in the development of bones and teeth we examined the distribution of Ae2 in cells involved in the formation of teeth and surrounding bone in young hamsters, mice and rats. In all three species strongest immunostaining for Ae2 was obtained in basolateral membranes of maturation ameloblasts and in osteoclasts resorbing bone. In hamsters a weaker staining was also seen in the Golgi apparatus of secretory ameloblasts, young osteoblasts and osteocytes, odontoblasts and fibroblasts of the forming periodontal ligament.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
Osteoclasts are multinucleated bone-resorbing cells responsible for constant remodeling of bone tissue and for maintaining calcium homeostasis. The osteoclast creates an enclosed space, a lacuna, between their ruffled border membrane and the mineralized bone. They extrude H(+) and Cl(-) into these lacunae by the combined action of vesicular H(+)-ATPases and ClC-7 exchangers to dissolve the hydroxyapatite of bone matrix.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2009
In cystic fibrosis, impaired secretion resulting from loss of activity of the cystic fibrosis transmembrane conductance regulator (CFTR) causes dehydration of intestinal contents and life-threatening obstructions. Conversely, impaired absorption resulting from loss of the NHE3 Na+/H+ exchanger causes increased fluidity of the intestinal contents and diarrhea. To test the hypothesis that reduced NHE3-mediated absorption could increase survival and prevent some of the intestinal pathologies of cystic fibrosis, Cftr/Nhe3 double heterozygous mice were mated and their offspring analyzed.
View Article and Find Full Text PDFThe NBC1 Na+/HCO3- cotransporter is expressed in many tissues, including kidney and intestinal epithelia. NBC1 mutations cause proximal renal tubular acidosis in humans, consistent with its role in HCO3- absorption in the kidney. In intestinal and colonic epithelia, NBC1 localizes to basolateral membranes and is thought to function in anion secretion.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2007
Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression.
View Article and Find Full Text PDFThe NHE4 Na+/H+ exchanger is abundantly expressed on the basolateral membrane of gastric parietal cells. To test the hypothesis that it is required for normal acid secretion, NHE4-null mutant (NHE4-/-) mice were prepared by targeted disruption of the NHE4 (Slc9a4) gene. NHE4-/- mice survived and appeared outwardly normal.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2005
Villi of the proximal duodenum are situated for direct exposure to gastric acid chyme. However, little is known about active bicarbonate secretion across villi that maintains the protective alkaline mucus barrier, a process that may be compromised in cystic fibrosis (CF), i.e.
View Article and Find Full Text PDFNHE3(-/-) mice display a profound defect in proximal tubule bicarbonate reabsorption but are only mildly acidotic owing to reduced glomerular filtration rate and enhanced H(+) secretion in distal nephron segments. In vivo microperfusion of rat distal tubules suggests that a significant fraction of bicarbonate reabsorption in this nephron segment is mediated by NHE2. Two approaches were used to evaluate the role of distal tubule NHE2 in compensating for the proximal defect of H(+) secretion in NHE3(-/-) mice.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2004
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.
View Article and Find Full Text PDFThe AE2 Cl-/HCO3- exchanger is expressed in numerous cell types, including epithelial cells of the kidney, respiratory tract, and alimentary tract. In gastric epithelia, AE2 is particularly abundant in parietal cells, where it may be the predominant mechanism for HCO3- efflux and Cl- influx across the basolateral membrane that is needed for acid secretion. To investigate the hypothesis that AE2 is critical for parietal cell function and to assess its importance in other tissues, homozygous null mutant (AE2(-/-)) mice were prepared by targeted disruption of the AE2 (Slc4a2) gene.
View Article and Find Full Text PDFThe major disease-causing mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine 508 (DeltaF508), which adversely affects processing and plasma membrane targeting of CFTR. Under conditions predicted to stabilize protein folding, DeltaF508 CFTR is capable of trafficking to the plasma membrane and retains cAMP-regulated anion channel activity. Overexpression is one factor that increases CFTR trafficking; therefore, we hypothesized that expression of a domain mimic of the first nucleotide-binding fold (NBF1) of CFTR, i.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2004
Studies of full-thickness, small intestinal preparations have shown that maximal anion secretion [indexed by short-circuit current (I(sc))] during intracellular cAMP (cAMP(i)) stimulation is transient and followed by a decline toward baseline. Declining I(sc) is preceded by decreases in transepithelial conductance (G(t)), which in the small intestine reflects the lateral intercellular space (LIS) volume of the paracellular pathway. We hypothesized that decreases in LIS volume limit the magnitude and duration of cAMP(i)-stimulated anion secretion.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2004
Paneth cells of intestinal crypts contribute to host defense by producing antimicrobial peptides that are packaged as granules for secretion into the crypt lumen. Here, we provide evidence using light and electron microscopy that postsecretory Paneth cell granules undergo limited dissolution and accumulate within the intestinal crypts of cystic fibrosis (CF) mice. On the basis of this finding, we evaluated bacterial colonization and expression of two major constituents of Paneth cells, i.
View Article and Find Full Text PDFGuanylin and uroguanylin, peptides synthesized in the intestine and kidney, have been postulated to have both paracrine and endocrine functions, forming a potential enteric-renal link to coordinate salt ingestion with natriuresis. To explore the in vivo role of uroguanylin in the regulation of sodium excretion, we created gene-targeted mice in which uroguanylin gene expression had been ablated. Northern and Western analysis confirmed the absence of uroguanylin message and protein in knockout mice, and cGMP levels were decreased in the mucosa of the small intestine.
View Article and Find Full Text PDFBackground And Aims: Unlike the intestine of normal subjects, small-intestinal epithelia of cystic fibrosis patients and cystic fibrosis transmembrane conductance regulator protein-null (CFTR(-)) mice do not respond to stimulation of intracellular cyclic adenosine monophosphate with inhibition of electroneutral NaCl absorption. Because CFTR-mediated anion secretion has been associated with changes in crypt cell volume, we hypothesized that CFTR-mediated cell volume reduction in villus epithelium is required for intracellular cyclic adenosine monophosphate inhibition of Na(+)/H(+) exchanger (primarily Na(+)/H(+) exchanger 3) activity in the proximal small intestine.
Methods: Transepithelial (22)Na flux across the jejuna of CFTR(+), CFTR(-), the basolateral membrane Na(+)/K(+)/2Cl(-) co-transporter protein NKCC1(+), and NKCC1(-) mice were correlated with changes in epithelial cell volume of the midvillus region.
Inflammatory bowel disease (IBD) is associated with mucosal T cell activation and diarrhea. We found that T cell activation with anti-CD3 mAb induces profound diarrhea in mice. Diarrhea was quantified by intestinal weight-to-length (wt/l) ratios, mucosal Na(+)/K(+)-ATPase activity was determined and ion transport changes were measured in Ussing chambers.
View Article and Find Full Text PDFBackground & Aims: Adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated anion secretion across the duodenal epithelium requires the cystic fibrosis transmembrane conductance regulator (CFTR) in the apical membrane and anion uptake proteins in the basolateral membrane. NKCC1, the epithelial Na(+)/K(+)/2Cl(-) cotransporter, is the major protein responsible for Cl(-) uptake. In this study, we evaluate the role of NKCC1 in determining the relative rates of transepithelial Cl(-) and HCO(3)(-) secretion during cAMP stimulation of the duodenum.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2002
Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption.
View Article and Find Full Text PDF