Venoarterial extracorporeal membrane oxygenation (VA ECMO) has become a standard of care for severe cardiogenic shock, refractory cardiac arrest and related impending multiorgan failure. The widespread clinical use of this complex temporary circulatory support modality is still contrasted by a lack of formal scientific evidence in the current literature. This might at least in part be attributable to VA ECMO related complications, which may significantly impact on clinical outcome.
View Article and Find Full Text PDFInfectious complications are common during extracorporeal membrane oxygenation (ECMO) and may negatively impact outcomes. However, there is considerable variation in the reported rates of incidence, which hampers the use of infections as a quality benchmark for ECMO centers. To assess the contributing role of poor interrater agreement, three independent raters reviewed medical records from all intensive care unit (ICU) patients who received ECMO for >24 h in our tertiary center between October 2019 and October 2021 for suspected episodes of infection, which were rated based on their date of onset and presumed site/diagnosis.
View Article and Find Full Text PDFPrognostic modelling techniques have rapidly evolved over the past decade and may greatly benefit patients supported with ExtraCorporeal Membrane Oxygenation (ECMO). Epidemiological and computational physiological approaches aim to provide more accurate predictive assessments of ECMO-related risks and benefits. Implementation of these approaches may produce predictive tools that can improve complex clinical decisions surrounding ECMO allocation and management.
View Article and Find Full Text PDFPurpose: To provide an overview and evaluate the performance of mortality prediction models for patients requiring extracorporeal membrane oxygenation (ECMO) support for refractory cardiocirculatory or respiratory failure.
Methods: A systematic literature search was undertaken to identify studies developing and/or validating multivariable prediction models for all-cause mortality in adults requiring or receiving veno-arterial (V-A) or veno-venous (V-V) ECMO. Estimates of model performance (observed versus expected (O:E) ratio and c-statistic) were summarized using random effects models and sources of heterogeneity were explored by means of meta-regression.
Objectives: To develop predictive models for blood culture (BC) outcomes in an emergency department (ED) setting.
Design: Retrospective observational study.
Setting: ED of a large teaching hospital in the Netherlands between 1 September 2018 and 24 June 2020.