Publications by authors named "Lara Ordonez"

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF

Introduction: Nearly two decades after leucine rich repeat kinase 2 (LRRK2) was discovered as a genetic determinant of Parkinson's disease (PD), LRRK2 has emerged a priority therapeutic target in PD and inhibition of its activity is hypothesized to be beneficial.

Areas Covered: LRRK2 targeting agents, in particular kinase inhibitors and agents reducing LRRK2 expression show promise in model systems and have progressed to phase I and phase II clinical testing for PD. Several additional targeting strategies for LRRK2 are emerging, based on promoting specific 'healthy' LRRK2 quaternary structures, heteromeric complexes and conformations.

View Article and Find Full Text PDF

Alterations induced by maternal immune activation (MIA) during gestation impact the subsequent neurodevelopment of progeny, a process that in humans, has been linked to the development of several neuropsychiatric conditions. To undertake a comprehensive examination of the molecular mechanisms governing MIA, we have devised an in vitro model based on neural stem cells (NSCs) sourced from fetuses carried by animals subjected to Poly I:C treatment. These neural progenitors demonstrate proliferative capacity and can be effectively differentiated into both neurons and glial cells.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases.

View Article and Find Full Text PDF

The present protocol allows for quantification of inter-centrosome distances in G2 phase cells by confocal fluorescence microscopy to determine centrosome cohesion deficits. We describe transfection and immunofluorescence approaches followed by image acquisition and analysis of inter-centrosome distances. This protocol is for adherent A549 cells transiently overexpressing pathogenic LRRK2 and for immortalized murine embryonic fibroblasts endogenously expressing LRRK2 but is amenable to any other cultured cell type as well.

View Article and Find Full Text PDF

The Parkinson's-disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases including Rab8 and Rab10, which enhances their binding to RILPL1 and RILPL2. The nascent interaction between phospho-Rab10 and RILPL1 blocks ciliogenesis in vitro and in the intact brain, and interferes with the cohesion of duplicated centrosomes in dividing cells. We show here that regulators of the LRRK2 signaling pathway including vps35 and PPM1H converge upon causing centrosomal deficits.

View Article and Find Full Text PDF

Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes.

View Article and Find Full Text PDF
Article Synopsis
  • Coding variations in the LRRK2 gene linked to Parkinson's disease increase kinase activity, particularly affecting the phosphorylation of specific proteins like S1292 and RAB10.
  • The study aimed to assess the consistency of measuring LRRK2 kinase activity across different labs using established protocols and various cell types.
  • While western blot methods could detect LRRK2 activity in cells and tissues with mutant LRRK2, there was no successful identification of endogenous LRRK2 activity in the tested models, highlighting the need for improved measurement techniques.
View Article and Find Full Text PDF

Parkinson's disease is a prominent and debilitating movement disorder characterized by the death of vulnerable neurons which share a set of structural and physiological properties. Over the recent years, increasing evidence indicates that Rab GTPases can directly as well as indirectly contribute to the cellular alterations leading to PD. Rab GTPases are master regulators of intracellular membrane trafficking events, and alterations in certain membrane trafficking steps can be particularly disruptive to vulnerable neurons.

View Article and Find Full Text PDF

Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD), and orally bioavailable, brain penetrant and highly potent LRRK2 kinase inhibitors are in early stages of clinical testing. Detection of LRRK2 phosphorylation, as well as phosphorylation of Rab10, a LRRK2 kinase substrate, have been proposed as target engagement biomarkers for LRRK2 inhibitor clinical trials. However, these readouts do not seem able to stratify patients based on enhanced LRRK2 kinase activity.

View Article and Find Full Text PDF

Mutations in the LRRK2 kinase are the most common cause of familial Parkinson's disease, and variants increase risk for the sporadic form of the disease. LRRK2 phosphorylates multiple RAB GTPases including RAB8A and RAB10. Phosphorylated RAB10 is recruited to centrosome-localized RILPL1, which may interfere with ciliogenesis in a disease-relevant context.

View Article and Find Full Text PDF

Mutations in the LRRK2 gene cause autosomal-dominant Parkinson's disease (PD), and both LRRK2 as well as RAB7L1 have been implicated in increased susceptibility to idiopathic PD. RAB7L1 has been shown to increase membrane-association and kinase activity of LRRK2, and both seem to be mechanistically implicated in the same pathway. Another RAB protein, RAB8A, has been identified as a prominent LRRK2 kinase substrate, and our recent work demonstrates that aberrant LRRK2-mediated phosphorylation of RAB8A leads to centrosomal alterations.

View Article and Find Full Text PDF

Background: Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive.

View Article and Find Full Text PDF

Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential.

View Article and Find Full Text PDF

Mutations in the () gene are intimately linked to both familial and sporadic Parkinson's disease. LRRK2 is a large protein kinase able to bind and hydrolyse GTP. A wealth of studies have established that the distinct pathogenic LRRK2 mutants differentially affect those enzymatic activities, either causing an increase in kinase activity without altering GTP binding/GTP hydrolysis, or displaying no change in kinase activity but increased GTP binding/decreased GTP hydrolysis.

View Article and Find Full Text PDF

Mutations in LRRK2 comprise the most common cause for familial Parkinson's disease (PD), and variations increase risk for sporadic disease, implicating LRRK2 in the entire disease spectrum. LRRK2 is a large protein harbouring both GTPase and kinase domains which display measurable catalytic activity. Most pathogenic mutations increase the kinase activity, with increased activity being cytotoxic under certain conditions.

View Article and Find Full Text PDF

Background: Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus.

View Article and Find Full Text PDF