Predicting the severity of COVID-19 remains an unmet medical need. Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. We developed a logistic regression-based classifier for the severity of viral infections and validated it in multiple viral infection settings including COVID-19.
View Article and Find Full Text PDFPurpose Of Review: Despite significant progress in our understanding and clinical management of multisystem inflammatory syndrome in children (MIS-C), significant challenges remain. Here, we review recently published studies on the clinical diagnosis, risk stratification, and treatment of MIS-C, highlighting key gaps in research progress that are a microcosm for challenges in translational pediatric research. We then discuss potential solutions in the realm of translational bioinformatics.
View Article and Find Full Text PDFViral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts.
View Article and Find Full Text PDF