The enhancement of Raman signals using photonic crystal structures has been the subject of numerous experimental and theoretical studies, leading to a variety of issues and inconsistencies. This paper presents a comprehensive experimental investigation into the impact of alignment between the laser excitation wavelength and the specific position of the photonic band gap on signal enhancement in Raman spectroscopy. By employing one-dimensional (1D) porous silicon photonic crystals, a systematic analysis across a large number of spectra was conducted.
View Article and Find Full Text PDFIn response to increasing concern about the impact of plastic degradation on the environment, this study investigates the degradation of virgin and recycled polyethylene terephthalate (PET) under γ-irradiation in aqueous solutions, with particular focus on the resulting formation of microplastic particles (MP). By exposing both virgin and recycled PET samples to different doses of γ-irradiation (10, 50, and 100 kGy), a comprehensive analysis using UV-vis spectroscopy, dynamic light scattering (DLS) and micro-Raman spectroscopy is presented. The results, highlighted by micro-Raman spectroscopy, show that γ-irradiation produces micrometer-sized plastic particles, with the recycled PET having a significantly higher MP content than its original counterpart.
View Article and Find Full Text PDFThe degradation of plastics upon UVC irradiation in aqueous solution and the formation of microplastic (MP) particles were investigated. Polypropylene (PP) and recycled and virgin polyethylene terephthalate (PET) were irradiated with a UV lamp emitting light at 254 nm. Irradiation was performed for 15 and 30 min, respectively, at an intensity of about 0.
View Article and Find Full Text PDFGlyphosate is one of the most widely used pesticides in the world, but it has been shown to persist in the environment and therefore needs to be detected in food. In this work, the detection of glyphosate by surface-enhanced Raman scattering (SERS) using gold and silver nanoparticles and three different commonly used laser excitations (532, 632, and 785 nm wavelengths) of a Raman microscope complemented with a portable Raman spectrometer with 785 nm excitation is compared. The silver and gold nanosphere SERS substrates were prepared by chemical synthesis.
View Article and Find Full Text PDFHistamine fish poisoning is a foodborne illness caused by the consumption of fish products with high histamine content. Although intoxication mechanisms and control strategies are well known, it remains by far the most common cause of seafood-related health problems. Since conventional methods for histamine testing are difficult to implement in high-throughput quality control laboratories, simple and rapid methods for histamine testing are needed to ensure the safety of seafood products in global trade.
View Article and Find Full Text PDFCommercial micrometer silicon (Si) powder was investigated as a potential anode material for lithium ion (Li-ion) batteries. The characterization of this powder showed the mean particle size of approx.75.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) with near-infrared (NIR) excitation offers a safe way for the detection and study of fragile biomolecules. In this work, we present the possibility of using silver-coated porous silicon photonic crystals as SERS substrates for near-infrared (1064 nm) excitation. Due to the deep penetration of NIR light inside silicon, the fabrication of photonic crystals was necessary to quench the band gap photoluminescence of silicon crystal, which acts as mechanical support for the porous layer.
View Article and Find Full Text PDFPorous silicon has been intensely studied for the past several decades and its applications were found in photovoltaics, biomedicine, and sensors. An important aspect for sensing devices is their long⁻term stability. One of the more prominent changes that occur with porous silicon as it is exposed to atmosphere is oxidation.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2017
A polymer nanocomposite was produced by ultrasonic-assisted dispersion of multiwalled carbon nanotubes (MWCNTs) in a polycarbonate matrix using -xylene and dichloromethane as the solvents. The filler loading was varied from 1 to 3 wt % in order to examine the effect of MWCNTs on the structure and properties of the composites. The nanocomposites were characterized by DSC, DTA, TGA, UV-vis, FTIR and Raman spectroscopy to evaluate the changes induced by the filler in the polymer matrix.
View Article and Find Full Text PDFThis study was focused on development of a rapid and sensitive method for histamine determination in fish based on Surface Enhanced Raman Spectroscopy (SERS) using simple and widely available silver colloid SERS substrate. Extraction of histamine with 0.4M perchloric acid and purification with 1-butanol significantly shortened sample preparation (30min) and provided clear SERS spectra with characteristic Raman bands of histamine.
View Article and Find Full Text PDFMacrolides with 14- and 15-membered ring are characterized by high and extensive tissue distribution, as well as good cellular accumulation and retention. Since macrolide structures do not fit the Lipinski rule of five, macrolide pharmacokinetic properties cannot be successfully predicted by common models based on data for small molecules. Here we describe the development of the first models for macrolide cellular pharmacokinetics.
View Article and Find Full Text PDFIn this study five macrolide antibiotics (azithromycin, erythromycin, clarithromycin, roxithromycin and telithromycin) were compared based on their ability to interact with human MDR1 (ABCB1, P-glycoprotein), studied from two main aspects: by determining the influence of macrolide antibiotics on MDR1 function, as well as the influence of MDR1 on macrolide accumulation in MES-SA/Dx5 cells overexpressing human MDR1. At higher micromolar concentrations five tested macrolides were shown to inhibit MDR1 function in terms of rhodamine-123 efflux and verapamil-activated ATPase function, whereas at lower concentrations they activated MDR1 ATPase. They were confirmed to be substrates of MDR1 and to compete with each other, as well as with verapamil for transport via this transporter.
View Article and Find Full Text PDF