The study of environmental DNA (eDNA) released by aquatic organisms in their habitat offers a fast, noninvasive and sensitive approach to monitor their presence. Common eDNA sampling methods such as water filtration and DNA precipitation are time-consuming, require difficult-to-handle equipment and partially integrate eDNA signals. To overcome these limitations, we created the first proof of concept of a passive, 3D-printed and easy-to-use eDNA sampler.
View Article and Find Full Text PDFArtificial light at night (ALAN) affects numerous physiological and behavioural mechanisms in various species by potentially disturbing circadian timekeeping systems and modifying melatonin levels. However, given the multiple direct and indirect effects of ALAN on organisms, large-scale transcriptomic approaches are essential to assess the global effect of ALAN on biological processes. Moreover, although studies have focused mainly on variations in gene expression during the night in the presence of ALAN, it is necessary to investigate the effect of ALAN on gene expression during the day.
View Article and Find Full Text PDFAll organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity.
View Article and Find Full Text PDFMetabarcoding is often presented as an alternative identification tool to compensate for coarse taxonomic resolution and misidentification encountered with traditional morphological approaches. However, metabarcoding comes with two major impediments which slow down its adoption. First, the picking and destruction of organisms for DNA extraction are time and cost consuming and do not allow organism conservation for further evaluations.
View Article and Find Full Text PDFHeterogeneity of hyporheic fauna is associated with geomorphological features and related vertical water exchanges. Constrictions on river floodplain are known to induce groundwater inputs and increase stygobite fauna. Two floodplain constrictions were studied in a large braided river (the Drôme River): one linked to a natural process (valley narrowing), another to an artificial river regulation (early 20th embankment).
View Article and Find Full Text PDFThe rate of molecular evolution varies widely among species. Life history traits (LHTs) have been proposed as a major driver of these variations. However, the relative contribution of each trait is poorly understood.
View Article and Find Full Text PDFThe evolutionary origin of the striking genome size variations found in eukaryotes remains enigmatic. The effective size of populations, by controlling selection efficacy, is expected to be a key parameter underlying genome size evolution. However, this hypothesis has proved difficult to investigate using empirical data sets.
View Article and Find Full Text PDFThe field of stoichiogenomics aims at understanding the influence of nutrient limitations on the elemental composition of the genome, transcriptome, and proteome. The 20 amino acids and the 4 nt differ in the number of nutrients they contain, such as nitrogen (N). Thus, N limitation shall theoretically select for changes in the composition of proteins or RNAs through preferential use of N-poor amino acids or nucleotides, which will decrease the N-budget of an organism.
View Article and Find Full Text PDFEffective population size (N e) is one of the most important parameters in, ecology, evolutionary and conservation biology; however, few studies of N e in surface freshwater organisms have been published to date. Even fewer studies have been carried out in groundwater organisms, although their evolution has long been considered to be particularly constrained by small N e. In this study, we estimated the contemporary effective population size of the obligate groundwater isopod: Proaselluswalteri (Chappuis, 1948).
View Article and Find Full Text PDFA key challenge for biologists is to document and explain global patterns of diversification in a wide range of environments. Here, we explore patterns of continental-scale diversification in a groundwater species-rich clade, the superfamily Aselloidea (Pancrustacea: Isopoda). Our analyses supported a constant diversification rate during most of the course of Aselloidea evolution, until 4-15 Ma when diversification rates started to decrease.
View Article and Find Full Text PDF