Mouse models have been essential to generate supporting data for the research of infectious diseases. Burkholderia pseudomallei, the etiological agent of melioidosis, has been studied using mouse models to investigate pathogenesis and efficacy of novel medical countermeasures to include both vaccines and therapeutics. Previous characterization of mouse models of melioidosis have demonstrated that BALB/c mice present with an acute infection, whereas C57BL/6 mice have shown a tendency to be more resistant to infection and may model chronic disease.
View Article and Find Full Text PDFPompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure.
View Article and Find Full Text PDFCurr Opin Microbiol
February 2017
Eukaryotic cells use autophagy to break down and recycle components such as aggregated proteins and damaged organelles. Research in the past decade, particularly using Salmonella enterica serovar Typhimurium as a model pathogen, has revealed that autophagy can also target invading intracellular bacterial pathogens for degradation. However, many bacterial pathogens have evolved mechanisms that allow for evasion of the autophagic pathway, such as motility or direct and irreversible cleavage of proteins that comprise the autophagic machinery.
View Article and Find Full Text PDFUnlabelled: Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella-containing vacuole (CCV) requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation.
View Article and Find Full Text PDFAutophagy is a conserved membrane transport pathway used to destroy pathogenic microbes that access the cytosol of cells. The intracellular pathogen Legionella pneumophila interferes with autophagy by delivering an effector protein, RavZ, into the host cytosol. RavZ acts by cleaving membrane-conjugated Atg8/LC3 proteins from pre-autophagosomal structures.
View Article and Find Full Text PDFMicrobes Infect
October 2016
Coxiella burnetii utilizes a Type IV Secretion System (T4SS) to modify host endomembrane transport systems to form a unique lysosome-derived niche called the Coxiella-containing vacuole (CCV). Although the CCV has lysosomal properties, this organelle displays distinct characteristics such as homotypic fusion and a cholesterol enriched limiting membrane, in addition to robustly interacting with autophagosomes. This review describes recent advances in understanding CCV biogenesis and the mechanisms C.
View Article and Find Full Text PDFCoxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. The molecular mechanisms used by this bacterium to create a pathogen-occupied vacuole remain largely unknown. Here, we conducted a visual screen on an arrayed library of C.
View Article and Find Full Text PDFA flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway.
View Article and Find Full Text PDFArch Insect Biochem Physiol
October 2007
In insects, eukaryotic endoparasites encounter a series of innate immune effector responses mediated in large part by circulating blood cells (hemocytes) that rapidly form multilayer capsules around foreign organisms. Critical components of the encapsulation response are chemical and enzyme-catalyzed oxidations involving phenolic and catecholic substrates that lead to synthesis of eumelanin. These responses are initiated immediately upon infection and are very site-specific, provoking no undesirable systemic responses in the host.
View Article and Find Full Text PDFThe synthesis and involvement of H(2)O(2) during the early stages of melanogenesis involving the oxidations of DOPA and dopamine (diphenolase activity) were established by two sensitive and specific electrochemical detection systems. Catalase-treated reaction mixtures showed diminished rates of H(2)O(2) production during the autoxidation and tyrosinase-mediated oxidation of both diphenols. Inhibition studies with the radical scavenger resveratrol revealed the involvement in these reactions of additional reactive intermediate of oxygen (ROI), one of which appears to be superoxide anion.
View Article and Find Full Text PDF