Publications by authors named "Lara Kamal"

Purpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.

Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals.

View Article and Find Full Text PDF

Background: Next-generation sequencing (NGS) has significantly transformed the landscape of identifying disease-causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undiagnosed. This may be attributed not only to the challenges posed by harder-to-detect variants, such as non-coding and structural variations but also to the existence of variants in genes not previously associated with the patient's clinical phenotype.

View Article and Find Full Text PDF

Sequencing exomes/genomes have been successful for identifying recessive genes; however, discovery of dominant genes including deafness genes (DFNA) remains challenging. We report a new DFNA gene, ATP11A, in a Newfoundland family with a variable form of bilateral sensorineural hearing loss (SNHL). Genome-wide SNP genotyping linked SNHL to DFNA33 (LOD = 4.

View Article and Find Full Text PDF

The age of sequencing has provided unprecedented insights into the human genome. The coding region of the genome comprises nearly 20,000 genes, of which approximately 4000 are associated with human disease. Beyond the protein-coding genome, which accounts for only 3% of the genome, lies a vast pool of regulatory elements in the form of promoters, enhancers, RNA species, and other intricate elements.

View Article and Find Full Text PDF

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity.

View Article and Find Full Text PDF

Fanconi anemia is a genetically and phenotypically heterogeneous disorder characterized by congenital anomalies, bone marrow failure, cancer, and sensitivity of chromosomes to DNA cross-linking agents. One of the 22 genes responsible for Fanconi anemia is , in which biallelic truncating mutations lead to Fanconi anemia group J and monoallelic truncating mutations predispose to certain cancers. However, of the more than 1000 reported missense mutations in , very few have been functionally characterized.

View Article and Find Full Text PDF

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic.

View Article and Find Full Text PDF

Despite tremendous progress through next generation sequencing technologies, familial focal epilepsies are insufficiently understood. We sought to identify the genetic basis in multiplex Palestinian families with familial focal epilepsy with variable foci (FFEVF). Family I with 10 affected individuals and Family II with five affected individuals underwent detailed phenotyping over three generations.

View Article and Find Full Text PDF

Purpose: To identify the accurate clinical diagnosis of rare syndromic inherited retinal diseases (IRDs) based on the combination of clinical and genetic analyses.

Methods: Four unrelated families with various autosomal recessive syndromic inherited retinal diseases were genetically investigated using whole-exome sequencing (WES).

Results: Two affected subjects in family MOL0760 presented with a distinctive combination of short stature, developmental delay, congenital mental retardation, microcephaly, facial dysmorphism and retinitis pigmentosa (RP).

View Article and Find Full Text PDF

Breast cancer among Palestinian women has lower incidence than in Europe or North America, yet is very frequently familial. We studied genetic causes of this familial clustering in a consecutive hospital-based series of 875 Palestinian patients with invasive breast cancer, including 453 women with diagnosis by age 40, or with breast or ovarian cancer in a mother, sister, grandmother or aunt ("discovery series"); and 422 women diagnosed after age 40 and with negative family history ("older-onset sporadic patient series"). Genomic DNA from women in the discovery series was sequenced for all known breast cancer genes, revealing a pathogenic mutation in 13% (61/453) of patients.

View Article and Find Full Text PDF

Objective: To identify the genetic basis of a recessive syndrome characterized by prenatal hyperechogenic brain foci, congenital microcephaly, hypothalamic midbrain dysplasia, epilepsy, and profound global developmental disability.

Methods: Identification of the responsible gene by whole exome sequencing and homozygosity mapping.

Results: Ten patients from 4 consanguineous Palestinian families manifested in utero with hyperechogenic brain foci, microcephaly, and intrauterine growth retardation.

View Article and Find Full Text PDF

Tooth development is controlled by the same processes that regulate formation of other ectodermal structures. Mutations in the genes underlying these processes may cause ectodermal dysplasia, including severe absence of primary or permanent teeth. Four consanguineous Palestinian families presented with oligodontia and hair and skin features of ectodermal dysplasia.

View Article and Find Full Text PDF

Background: Familial glucocorticoid deficiency (FGD) reflects specific failure of adrenocortical glucocorticoid production in response to adrenocorticotropic hormone (ACTH). Most cases are caused by mutations encoding ACTH-receptor components (MC2R, MRAP) or the general steroidogenesis protein (StAR). Recently, nicotinamide nucleotide transhydrogenase (NNT) mutations were found to cause FGD through a postulated mechanism resulting from decreased detoxification of reactive oxygen species (ROS) in adrenocortical cells.

View Article and Find Full Text PDF