The retention capacity of natural calcareous gravels used as a filling material between the packages containing radioactive waste materials in the disposal cells was evaluated for Sr, U, Ni, Ag, C, Tc, Pu, Th and Eu. The thermodynamic calculations performed considering repository conditions indicated that the chemistry of most of these elements was dominated by neutral or cationic species, this is the case of Pu Eu, Th, Ni and Ag. The studied gravels presented high sorption capacities for these cationic or neutral species, but they are not efficient on retaining anionic species as in the case of Tc or Sr, which is already present in the composition of the studied gravels.
View Article and Find Full Text PDFMost of the highly radioactive spent nuclear fuel (SNF) around the world is destined for final disposal in deep-mined geological repositories. At the end of the fuel's useful life in a reactor, about 96% of the SNF is still UO. Thus, the behaviour of UO in SNF must be understood and evaluated under the weathering conditions of geologic disposal, which extend to periods of hundreds of thousands of years.
View Article and Find Full Text PDFArsenazo III is a widely used reagent for the concentration measurement of uranium and other actinides in aqueous samples. This study indicates that, for routine aqueous samples, due to the strong complexing ability with Arsenazo III, Fe(III) can significantly decrease the UV-Vis absorbance of the U(VI)-Arsenazo III complex, whereas the influence of Fe(II) on the absorbance is negligible. However, when Fe(II) is present in a gamma-irradiated U(VI) aqueous sample, it can give rise to the Fenton reaction, which produces oxidizing radicals that decompose the subsequently added Arsenazo III, leading to a sharp decrease in the absorbance of the U(VI)-Arsenazo III complex.
View Article and Find Full Text PDFScenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository.
View Article and Find Full Text PDFLong-term performance assessment of nuclear waste repositories is affected by the ability of the outer barrier systems to retain radionuclides after possible corrosive leakage of waste containers. The mobility of the radionuclides released from the spent fuel depends strongly on the processes that take place in the backfill material. The interaction of steel corrosion products and radionuclides is part of such a scenario.
View Article and Find Full Text PDFIn the high level nuclear waste repository concept, spent nuclear fuel is designed to be encapsulated in steel canisters. Thus, it is necessary to study the influence of the steel and/or its corrosion products on the behaviour of the radionuclides released from the fuel. In this sense, the main objective of this work is to contribute to the knowledge of the influence of the steel and/or its corrosion products on the uranium(VI) retention.
View Article and Find Full Text PDFIn this work the sorption of As(III) and As(V) on different natural iron oxides (hematite, magnetite, and goethite) has been studied as a function of different parameters. The sorption kinetics for the three iron oxides shows that equilibrium is reached in less than 2 days and the kinetics of sorption seems to be faster for goethite and magnetite than for hematite. The variation of the arsenic sorbed on the three different sorbents as a function of the equilibrium arsenic concentration in solution has been fitted with a non-competitive Langmuir isotherm.
View Article and Find Full Text PDFThe processes that affect the mobility of uranium and other radionuclides in the environment have been largely studied at both the laboratory and the field scales. The natural reactors found at the Oklo uranium mine in Gabon constitute a unique investigation setting as spontaneous fission reactions occurred two billion years ago. Oklo uraninites contain a large amount of other radionuclides as a result of the fission process.
View Article and Find Full Text PDF