Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, detected even in remote regions such as the Antarctic, Arctic, and Tibetan Plateau. Thus, understanding their biodegradation processes at low temperatures is crucial. Therefore, the potential of fungal strains from the Antarctic to biodegrade PAHs was explored.
View Article and Find Full Text PDFA new method for the production and isolation of (+)-palitantin (1) is herein reported, from cultures of the fungal strain Penicillium sp. AMF1a. (+)-Palitantin was isolated in 160 mg/L yield, as an alternative procedure to obtain 1 at a larger scale.
View Article and Find Full Text PDFThe use of marine microorganisms in the treatment of dyes and textile effluents is promising in view of their tolerance to salinity, a characteristic found in this kind of effluent. In this study, different culture conditions were applied to evaluate the decolorization, degradation, and detoxification of Sulphur Indigo Blue (SIB) by the marine-derived basidiomycete Paramarasmius palmivorus CBMAI 1062. Low salt concentration (SLS) and high salt concentration (SMASHS) media were used.
View Article and Find Full Text PDFCold-adapted microorganisms can produce enzymes with activity at low and mild temperatures, which can be applied to environmental biotechnology. This study aimed to characterize 20 Antarctic fungi to identify their genus (ITS rDNA marker) and growth temperatures and evaluate their ability to decolorize and detoxify the textile dye indigo carmine (IC). An individual screening was performed to assess the decolorization and detoxification of IC by the isolates, as well as in consortia with other fungi.
View Article and Find Full Text PDFAims: Citrus canker caused by Xanthomonas citri subsp. citri (X. citri) is a disease of economic importance.
View Article and Find Full Text PDFHarsh and extreme environments, such as Antarctica, offer unique opportunities to explore new microbial taxa and biomolecules. Given the limited knowledge on microbial diversity, this study aimed to compile, analyze and compare a subset of the biobank of Antarctic fungi maintained at the UNESP's Central of Microbial Resources (CRM-UNESP). A total of 711 isolates (240 yeasts and 471 filamentous fungi) from marine and terrestrial samples collected at King George Island (South Shetland Islands, Antarctica) were used with the primary objective of investigating their presence in both marine and terrestrial environments.
View Article and Find Full Text PDFUnlabelled: Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of natural products with high antifungal activity and low toxicity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2023
This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days.
View Article and Find Full Text PDFAntarctic harsh conditions favor the development of microbial adaptations. In this study, a molecular approach was applied to identify/refine the taxonomy of five yeasts isolated from different Antarctic samples, which were tested against ranges of temperature, UV radiations, salinity, and pH. Based on sequencing and phylogenetic analysis, strain CRM 1839 was confirmed as Naganishia sp.
View Article and Find Full Text PDFMicrobial therapeutic enzymes are the protagonists in the pharmacological treatment of different human diseases. The intrinsic enzymatic characteristics, such as high affinity and specificity to the corresponding substrate, enable effective therapies, with minimal adverse effects and complete remission. However, immunogenicity, short half-life, low enzymatic yield, and low selectivity regarding available enzyme drugs are currently the main obstacles to their development and the broad adherence to therapeutic protocols.
View Article and Find Full Text PDFAntarctica has one of the most hostile conditions on the planet. The environmental characteristics found in this region favor the development of extremophile microorganisms, which are poorly explored biotechnologically. In this context, this study aimed at selectively isolating fungi with potential for the bioremediation of a textile dye.
View Article and Find Full Text PDFAims: The control of Xanthomonas citri subsp. citri (X. citri), causal agent of citrus canker, relies heavily on integrated agricultural practices involving the use of copper-based chemicals.
View Article and Find Full Text PDFOver recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms.
View Article and Find Full Text PDFSoil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected.
View Article and Find Full Text PDFThe extracellular serine protease produced by Acremonium sp. L1-4B isolated from the Antarctic continent, was purified and used for the proteolysis of bovine and caprine sodium caseinate. Protein hydrolysates were evaluated in vitro to determine their antioxidant and antihypertensive potential, and later characterized by mass spectrometry.
View Article and Find Full Text PDFChemosphere
March 2021
The combination of different microorganisms and their metabolisms makes the use of microbial consortia in bioremediation processes a useful approach. In this sense, this study aimed at structuring and selecting a marine microbial consortium for Remazol Brilliant Blue R (RBBR) detoxification and decolorization. Experimental design was applied to improve the culture conditions, and metatranscriptomic analysis to understand the enzymatic pathways.
View Article and Find Full Text PDFGlacial retreat is one of the most conspicuous signs of warming in Antarctic regions. Glacier soils harbor an active microbial community of decomposers, and under the continuous retraction of glaciers, the soil starts to present a gradient of physical, chemical, and biological factors reflecting regional changes over time. Little is known about the biological nature of fungi in Antarctic glacier soils.
View Article and Find Full Text PDFA new method of screening was developed to generate 770 organic and water-soluble fractions from extracts of nine species of marine sponges, from the growth media of 18 species of marine-derived fungi, and from the growth media of 13 species of endophytic fungi. The screening results indicated that water-soluble fractions displayed significant bioactivity in cytotoxic, antibiotic, anti-, anti-, and inhibition of proteasome assays. Purification of water-soluble fractions from the growth medium of IS1-A provided the new glutamic acid derivatives solitumine A (), solitumine B (), and solitumidines A-D (-).
View Article and Find Full Text PDFThe repertoire of redox-active enzymes produced by the marine fungus Peniophora sp. CBMAI 1063, a laccase hyper-producer strain, was characterized by omics analyses. The genome revealed 309 Carbohydrate-Active Enzymes (CAZymes) genes, including 48 predicted genes related to the modification and degradation of lignin, whith 303 being transcribed under cultivation in optimized saline conditions for laccase production.
View Article and Find Full Text PDFExtremophiles comprise microorganisms that are able to grow and thrive in extreme environments, including in an acidic or alkaline pH, high or low temperatures, high concentrations of pollutants, and salts, among others. These organisms are promising for environmental biotechnology due to their unique physiological and enzymatic characteristics, which allow them to survive in harsh environments. Due to the stability and persistence of these microorganisms under adverse environmental conditions, they can be used for the bioremediation of environments contaminated with extremely recalcitrant pollutants.
View Article and Find Full Text PDFMarine-derived fungi are relevant genetic resources for bioremediation of saline environments/processes. Among the five fungi recovered from marine sponges able to degrade pyrene (Py) and benzo[a]pyrene (BaP), Tolypocladium sp. strain CBMAI 1346 and Xylaria sp.
View Article and Find Full Text PDFUtilization of marine algae has increased considerably over the past decades, since biodiversity within brown, red and green marine algae offers possibilities of finding a variety of bioactive compounds. Marine algae are rich sources of dietary fibre. The remarkable positive effects of seaweed dietary fibre on human body are related to their prebiotic activity over the gastrointestinal tract (GIT) microbiota.
View Article and Find Full Text PDFStudies of secondary metabolites (natural products) that cover their isolation, chemical synthesis and bioactivity investigation present myriad opportunities for discovery. For example, the isolation of novel secondary metabolites can inspire advances in chemical synthesis strategies to achieve their practical preparation for biological evaluation. In the process, chemical synthesis can also provide unambiguous structural characterization of the natural products.
View Article and Find Full Text PDFThe population interest in health products is increasing day-by-day. Thus, the demand for natural products to be added in food and pharmaceutical commodity is also rising. Among these additives, colorants, which provides color to products, can be produced by microorganism through bioprocess.
View Article and Find Full Text PDF