Electrospinning generates fibrous scaffolds ideal for engineering soft orthopedic tissues. By modifying the electrospinning process, scaffolds with different structural organization and content can be generated. For example, fibers can be aligned in a single direction, or the porosity of the scaffold can be modified through the use of multi-jet electrospinning and the removal of sacrificial fibers.
View Article and Find Full Text PDFFew therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor β3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering.
View Article and Find Full Text PDFThe knee meniscus is a crucial component of the knee that functions to stabilize the joint, distribute load, and maintain congruency. Meniscus tears and degeneration are common, and natural healing is limited. Notably, few children present with meniscus injuries and other related fibrocartilaginous tissues heal regeneratively in immature animals and in the fetus.
View Article and Find Full Text PDFAligned nanofibrous scaffolds can recapitulate the structural hierarchy of fiber-reinforced tissues of the musculoskeletal system. While these electrospun fibrous scaffolds provide physical cues that can direct tissue formation when seeded with cells, the ability to chemically guide a population of cells, without disrupting scaffold mechanical properties, would improve the maturation of such constructs and add additional functionality to the system both in vitro and in vivo. In this study, we developed a fabrication technique to entrap drug-delivering microspheres within nanofibrous scaffolds.
View Article and Find Full Text PDFExpert Rev Med Devices
September 2009
This review focuses on the role of nanostructure and nanoscale materials for tissue engineering applications. We detail a scaffold production method (electrospinning) for the production of nanofiber-based scaffolds that can approximate many critical features of the normal cellular microenvironment, and so foster and direct tissue formation. Further, we describe new and emerging methods to increase the applicability of these scaffolds for in vitro and in vivo application.
View Article and Find Full Text PDF