Publications by authors named "Lapthorn A"

Article Synopsis
  • Glutathione-S-transferases (GSTs) play a crucial role in detoxifying harmful substances in cells by reacting glutathione with electrophiles to form stable compounds.
  • GSTK1-1 is the main isoform found in the mitochondria, while GSTA1-1 and GSTA4-4 may also be present, particularly in cancer cells, suggesting a potential cancer treatment target.
  • The study explores how modifications to GST substrates can influence their reactivity with different GST isoforms, paving the way for targeted therapies to disrupt the mitochondrial glutathione levels in specific cancer cells.
View Article and Find Full Text PDF

Background: Transformation of resident fibroblasts to profibrotic myofibroblasts in the tunica albuginea is a critical step in the pathophysiology of Peyronie's disease (PD). We have previously shown that myofibroblasts do not revert to the fibroblast phenotype and we suggested that there is a point of no return at 36 hours after induction of the transformation. However, the molecular mechanisms that drive this proposed irreversibility are not known.

View Article and Find Full Text PDF

Hypertrophic scars are a common complication of burn injuries, yet there are no medications to prevent their formation. During scar formation, resident fibroblasts are transformed to myofibroblasts which become resistant to apoptosis. Previously, we have shown that hydroxypyridone anti-fungals can inhibit transformation of fibroblasts, isolated from hypertrophic scars, to myofibroblasts.

View Article and Find Full Text PDF

Our growing ability to tailor healthcare to the needs of individuals has the potential to transform clinical treatment. However, the measurement of multiple biomarkers to inform clinical decisions requires rapid, effective, and affordable diagnostics. Chronic diseases and rapidly evolving pathogens in a larger population have also escalated the need for improved diagnostic capabilities.

View Article and Find Full Text PDF

Drug repurposing has been shown to bring safe medications to new patient populations, as recently evidenced by the COVID-19 pandemic. We investigated whether we could use phenotypic screening to repurpose drugs for the treatment of Peyronie's disease (PD). PD is a fibrotic disease characterised by continued myofibroblast presence and activity leading to formation of a plaque in the penile tunica albuginea (TA) that can cause pain during erection, erectile dysfunction, and penile deformity.

View Article and Find Full Text PDF

Although hypertrophic scarring affects ∼91% of burn patients annually, there is no drug to prevent this common complication. Hypertrophic scars are a result of dysregulated wound healing, characterised by persistent myofibroblast transformation and the excessive accumulation of extracellular matrix (ECM). Due to the multi-mechanistic nature of the scarring process, target-based approaches for identifying novel drugs have failed.

View Article and Find Full Text PDF

Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm).

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) play a pivotal role in many biological processes. Discriminating functionally important well-defined protein-protein complexes formed by specific interactions from random aggregates produced by nonspecific interactions is therefore a critical capability. While there are many techniques which enable rapid screening of binding affinities in PPIs, there is no generic spectroscopic phenomenon which provides rapid characterization of the structure of protein-protein complexes.

View Article and Find Full Text PDF

The structural order of biopolymers, such as proteins, at interfaces defines the physical and chemical interactions of biological systems with their surroundings and is hence a critical parameter in a range of biological problems. Known spectroscopic methods for routine rapid monitoring of structural order in biolayers are generally only applied to model single-component systems that possess a spectral fingerprint which is highly sensitive to orientation. This spectroscopic behavior is not a generic property and may require the addition of a label.

View Article and Find Full Text PDF

The structure adopted by biomaterials, such as proteins, at interfaces is a crucial parameter in a range of important biological problems. It is a critical property in defining the functionality of cell/bacterial membranes and biofilms (i.e.

View Article and Find Full Text PDF

Water dynamics in the solvation shell of solutes plays a very important role in the interaction of biomolecules and in chemical reaction dynamics. However, a selective spectroscopic study of the solvation shell is difficult because of the interference of the solute dynamics. Here we report on the observation of heavily slowed down water dynamics in the solvation shell of different solutes by measuring the low-frequency spectrum of solvation water, free from the contribution of the solute.

View Article and Find Full Text PDF

The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, error-free as much as possible. In this study, we have critically examined PDB structures of 292 protein molecules which have been deposited in the repository along with potentially incorrect ligands labelled as Unknown ligands (UNK).

View Article and Find Full Text PDF

Antigenic domains are defined to contain a limited number of neighboring epitopes recognized by antibodies (Abs) but their molecular relationship remains rather elusive. We thoroughly analyzed the antigenic surface of the important pregnancy and tumor marker human chorionic gonadotropin (hCG), a cystine knot (ck) growth factor, and set antigenic domains and epitopes in molecular relationships to each other. Antigenic domains on hCG, its free hCGα and hCGβ subunits are dependent on appropriate inherent molecular features such as molecular accessibility and protrusion indices that determine bulging structures accessible to Abs.

View Article and Find Full Text PDF

Underdamped terahertz-frequency delocalized phonon-like modes have long been suggested to play a role in the biological function of DNA. Such phonon modes involve the collective motion of many atoms and are prerequisite to understanding the molecular nature of macroscopic conformational changes and related biochemical phenomena. Initial predictions were based on simple theoretical models of DNA.

View Article and Find Full Text PDF

hCG and its variants are markers for pregnancy tests, pregnancyrelated complications, trophoblastic diseases, pre-natal screening of Down's syndrome and doping controls. Strong demands are imposed on diagnostic methods by the dynamic changes in the absolute and relative levels of hCG protein backbone variants and glycosylation isoforms in serum and urine during development of pregnancy or the progression/remission of tumors. Observed differences in the results between commercial diagnostic immunoassays reflect the unequal molar recognition of the different metabolic hCG variants, in particular the hCG beta core fragment (hCGβcf), by the diagnostic antibodies (Abs), as their epitopes are not standardized, and the fact that suboptimal hCG standards are used.

View Article and Find Full Text PDF

Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these 'hotspots' has previously been accomplished through inefficient 'top-down' methods.

View Article and Find Full Text PDF

Optical spectroscopic methods do not routinely provide information on higher order hierarchical structure (tertiary/quaternary) of biological macromolecules and assemblies. This necessitates the use of time-consuming and material intensive techniques, such as protein crystallography, NMR, and electron microscopy. Here we demonstrate a spectroscopic phenomenon, superchiral polarimetry, which can rapidly characterize ligand-induced changes in protein higher order (tertiary/quaternary) structure at the picogram level, which is undetectable using conventional CD spectroscopy.

View Article and Find Full Text PDF

Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution.

View Article and Find Full Text PDF

The genome of Escherichia coli K12 contains 9 open reading frames encoding aldo/keto reductases (AKRs) that are differentially regulated and sequence diverse. A significant amount of data is available for the E. coli AKRs through the availability of gene knockouts and gene expression studies, which adds to the biochemical and kinetic data.

View Article and Find Full Text PDF

The spectroscopic analysis of large biomolecules is important in applications such as biomedical diagnostics and pathogen detection, and spectroscopic techniques can detect such molecules at the nanogram level or lower. However, spectroscopic techniques have not been able to probe the structure of large biomolecules with similar levels of sensitivity. Here, we show that superchiral electromagnetic fields, generated by the optical excitation of plasmonic planar chiral metamaterials, are highly sensitive probes of chiral supramolecular structure.

View Article and Find Full Text PDF

Overexpression in Escherichia coli of a tau (U) class glutathione transferase (GST) from maize (Zea mays L.), termed ZmGSTU1, caused a reduction in heme levels and an accumulation of porphyrin precursors. This disruption was highly specific, with the expression of the closely related ZmGSTU2 or other maize GSTs having little effect.

View Article and Find Full Text PDF

Type II dehydroquinase is a small (150-amino-acid) protein which in solution packs together to form a dodecamer with 23 cubic symmetry. In crystals of this protein the symmetry of the biological unit can be coincident with the crystallographic symmetry, giving rise to cubic crystal forms with a single monomer in the asymmetric unit. In crystals where this is not the case, multiple copies of the monomer are present, giving rise to significant and often confusing noncrystallographic symmetry in low-symmetry crystal systems.

View Article and Find Full Text PDF