Publications by authors named "Laplantine E"

Degradation of damaged mitochondria, a process called mitophagy, plays a role in mitochondrial quality control and its dysfunction has been linked to neurodegenerative pathologies. The PINK1 kinase and the ubiquitin ligase Parkin-mediated mitophagy represents the most common pathway in which specific receptors, including Optineurin (Optn), target ubiquitin-labeled mitochondria to autophagosomes. Here, we show that Protein Kinases D (PKD) are activated and recruited to damaged mitochondria.

View Article and Find Full Text PDF

Patients with severe COVID-19 show an altered immune response that fails to control the viral spread and suffer from exacerbated inflammatory response, which eventually can lead to death. A major challenge is to develop an effective treatment for COVID-19. NF-κB is a major player in innate immunity and inflammatory process.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified a connection between haploinsufficiency of the OTULIN gene and severe responses to staphylococcal infections in patients, leading to life-threatening necrosis.
  • This condition is similar to the symptoms seen in Cri-du-Chat syndrome, which involves a deletion on chromosome 5p.
  • The impairment from OTULIN causes an accumulation of linear ubiquitin in skin cells, leading to increased vulnerability to the staphylococcal toxin α-toxin, despite no changes in blood immune cells.
View Article and Find Full Text PDF

Human Herpesvirus 8 (HHV-8) is associated with three main severe orphan malignancies, Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD), and primary effusion lymphoma (PEL), which present few therapeutic options. We identified the antimalarial primaquine diphosphate (PQ) as a promising therapeutic candidate for HHV-8-associated PEL and KS. Indeed, PQ strongly reduced cell viability through caspase-dependent apoptosis, specifically in HHV-8-infected PEL cells.

View Article and Find Full Text PDF

The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role.

View Article and Find Full Text PDF

CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold.

View Article and Find Full Text PDF

Optineurin (Optn) is a 577 aa protein encoded by the gene. Mutations of are associated with normal tension glaucoma and amyotrophic lateral sclerosis, and its gene has also been linked to the development of Paget's disease of bone and Crohn's disease. Optn is involved in diverse cellular functions, including NF-κB regulation, membrane trafficking, exocytosis, vesicle transport, reorganization of actin and microtubules, cell cycle control, and autophagy.

View Article and Find Full Text PDF

Background: Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO.

View Article and Find Full Text PDF

We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants.

View Article and Find Full Text PDF

The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch.

View Article and Find Full Text PDF

The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries.

View Article and Find Full Text PDF

Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy.

View Article and Find Full Text PDF

The prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype.

View Article and Find Full Text PDF

Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC.

View Article and Find Full Text PDF

Viral invasion into a host is initially recognized by the innate immune system, mainly through activation of the intracellular cytosolic signaling pathway and coordinated activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB) transcription factors that promote type I interferon gene induction. The TANK-binding Kinase 1 (TBK1) phosphorylates and activates IRF3. Here, we show that Optineurin (Optn) dampens the antiviral innate immune response by targeting the deubiquitinating enzyme CYLD to TBK1 in order to inhibit its enzymatic activity.

View Article and Find Full Text PDF

Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation.

View Article and Find Full Text PDF

Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB.

View Article and Find Full Text PDF

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability.

View Article and Find Full Text PDF

This review highlights recent advances in our understanding of the mechanisms of Optineurin (Optn) action and its implication in diseases. Optn has emerged as a key player regulating various physiological processes, including membrane trafficking, protein secretion, cell division and host defense against pathogens. Furthermore, there is growing evidence for an association of Optn mutations with human diseases such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone.

View Article and Find Full Text PDF

Plk1 activation is required for progression through mitotic entry to cytokinesis. Here we show that at mitotic entry, Plk1 phosphorylates Optineurin (Optn) at serine 177 and that this dissociates Optn from the Golgi-localized GTPase Rab8, inducing its translocation into the nucleus. Mass spectrometry analysis revealed that Optn is associated with a myosin phosphatase complex (MP), which antagonizes the mitotic function of Plk1.

View Article and Find Full Text PDF

TRIM proteins have recently emerged as novel players in antiviral defense. TRIM proteins contain a tri-partite motif, composed of a RING zinc finger, one or two B-boxes and a coiled-coil domain. Many members of this large protein family of E3 ubiquitin ligases catalyze the attachment of ubiquitin to a substrate protein, an activity dependent on the RING domain.

View Article and Find Full Text PDF

An important property of NEMO, the core element of the IKK complex involved in NF-kappaB activation, resides in its ability to specifically recognize poly-ubiquitin chains. A small domain called NOA/UBAN has been suggested to be responsible for this property. We recently demonstrated that the C-terminal Zinc Finger (ZF) of NEMO is also able to bind ubiquitin.

View Article and Find Full Text PDF