This systematic review and network meta-analysis (NMA) sought to compare different antidepressant treatments for treatment-resistant depression (TRD) in order to facilitate evidence-based choices. A literature search of PubMed, Cochrane Library, and Embase from inception until April 13th, 2023 identified randomized, controlled trials (RCTs) of adults with depression who had not responded to at least two antidepressant trials; all RCTs had ≥10 participants per study arm, and participants with bipolar or psychotic depression were excluded. The Cochrane Risk of Bias Tool-2 was used to assess study quality.
View Article and Find Full Text PDFDeuterium metabolic imaging (DMI) is an emerging Magnetic Resonance technique providing valuable insight into the dynamics of cellular glucose (Glc) metabolism of the human brain in vivo using deuterium-labeled (H) glucose as non-invasive tracer. Reliable concentration estimation of H-Glc and downstream synthesized neurotransmitters glutamate + glutamine (Glx) requires accurate knowledge of relaxation times, but so far tissue-specific T and T relaxation times (e.g.
View Article and Find Full Text PDFAlterations in brain structure are frequently observed in adults with early-treated phenylketonuria (PKU) compared to healthy controls, with cerebral white matter (WM) being particularly affected. The extent to which temporary elevation of phenylalanine (Phe) levels impacts WM remains unclear. We conducted a double-blind, randomised, placebo-controlled crossover trial to investigate the effects of a 4-week high Phe exposure on cerebral WM and its relationship to cognitive performance and metabolic parameters in adults with PKU.
View Article and Find Full Text PDFFunctional Positron Emission Tomography (fPET) with (bolus plus) constant infusion of [F]-fluorodeoxyglucose FDG), known as fPET-FDG, is a recently introduced technique in human neuroimaging, enabling the detection of dynamic glucose metabolism changes within a single scan. However, the statistical analysis of fPET-FDG data remains challenging because its signal and noise characteristics differ from both classic bolus-administration FDG PET and from functional Magnetic Resonance Imaging (fMRI), which together compose the primary sources of inspiration for analytical methods used by fPET-FDG researchers. In this study, we present an investigate of how inaccuracies in modeling baseline FDG uptake can introduce artifactual patterns to detrended TAC residuals, potentially introducing spurious (de)activations to general linear model (GLM) analyses.
View Article and Find Full Text PDFThe dopaminergic system is a central component of the brain's neurobiological framework, governing motor control and reward responses and playing an essential role in various brain disorders. Within this complex network, the nigrostriatal pathway represents a critical circuit for dopamine neurotransmission from the substantia nigra to the striatum. However, stand-alone functional magnetic resonance imaging is unable to study the intricate interplay between brain activation and its molecular underpinnings.
View Article and Find Full Text PDFWorld J Biol Psychiatry
November 2024
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [C]AMT, a substrate for tryptophan hydroxylase.
View Article and Find Full Text PDFMAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.
View Article and Find Full Text PDFPurpose: The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach.
Methods: 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [F]FDG glucose metabolism.
Deuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions.
View Article and Find Full Text PDFPremenstrual dysphoric disorder (PMDD) is a mood disorder for which selective progesterone receptor modulator (SPRM) treatment has been demonstrated to be beneficial. The neural signatures of this treatment have been so far identified as greater fronto-cingulate reactivity during aggressive response to provocation, but no changes in terms of gray matter structure. White matter has recently been found to differ between patients with PMDD and healthy controls.
View Article and Find Full Text PDFSelf-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g.
View Article and Find Full Text PDFPurpose: Positron emission tomography (PET) provides precise molecular information on physiological processes, but its low temporal resolution is a major obstacle. Consequently, we characterized the metabolic response of the human brain to working memory performance using an optimized functional PET (fPET) framework at a temporal resolution of 3 s.
Methods: Thirty-five healthy volunteers underwent fPET with [F]FDG bolus plus constant infusion, 19 of those at a hybrid PET/MRI scanner.
Background: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity.
View Article and Find Full Text PDFPsychoneuroendocrinology
September 2023
Background: Sex-specific differences in brain connectivity were found in various neuroimaging studies, though little is known about sex steroid effects on insular functioning. Based on well-characterized sex differences in emotion regulation, interoception and higher-level cognition, gender-dysphoric individuals receiving gender-affirming hormone therapy represent an interesting cohort to investigate how sex hormones might influence insular connectivity and related brain functions.
Methods: To analyze the potential effect of sex steroids on insular connectivity at rest, 11 transgender women, 14 transgender men, 20 cisgender women, and 11 cisgender men were recruited.
Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-H]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using H MRSI (DMI) and H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.
View Article and Find Full Text PDFVariants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.
View Article and Find Full Text PDF