Publications by authors named "Lanying Q Hatcher"

The amyloid beta (A beta) peptide of Alzheimer's disease binds copper(II), and the peptide-bound metal may be a source of reactive oxygen species and neurotoxicity. To circumvent peptide aggregation and reduce redox activity, there is growing interest in using metal chelates as drug therapeutics for AD, whose design requires accurate data on the affinity of A beta peptides for copper(II). Reports on Cu2+ binding to A beta range from approximately 10(5) to approximately 10(9); these values' being obtained for different peptide lengths (1-16, 1-28, 1-40, 1-42) at varying pH.

View Article and Find Full Text PDF

The detailed structure of melanin remains elusive due to the complexity and insolubility of the pigment. Herein we describe a novel oxidation of 5,6-dihydroxyindole (DHI) as a means to characterize soluble intermediates formed prior to oligomerization. The approach entails the use of a biomimetic copper-peroxo oxidant, at ultra-low temperature (-78 degrees C).

View Article and Find Full Text PDF

An accurate data analysis method for determining stoichiometry and thermodynamic parameters from isothermal titration calorimetry data for the binding of macromolecules to metal cations that are solubilized through an association with a weak ligand is presented. This approach is applied to determine the binding constant for the association of Cu(II) to the first 16 residues of the Alzheimer's amyloid beta peptide, Abeta(1-16) under conditions where Cu(II) is rendered soluble through weak binding to glycine. At pH 7.

View Article and Find Full Text PDF

In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination.

View Article and Find Full Text PDF

Employing a tetradentate N3S(thioether) ligand, LN3S, dioxygen reactivity of a copper(I) complex, [(LN3S)CuI]+ (1) was examined. In CH2Cl2, acetone (at -80 degrees C), or 2-methyltetrahydrofuran (at -128 degrees C), 1 reacts with O2 producing the end-on bound peroxodicopper(II) complex [{(LN3S)CuII}2(mu-1,2-O2(2-))]2+ (2), the first reported copper-dioxygen adduct with sulfur (thioether) ligation. Its absorption spectrum contains an additional low-energy feature (but not a Cu-S CT band) compared to the previously well-characterized N4 ligand complex, [{(TMPA)CuII}2(mu-1,2-O2(2-))]2+ (3) (TMPA = tris(2-pyridylmethyl)amine).

View Article and Find Full Text PDF

The variation of ligand para substituents on pyridyl donor groups of tridentate amine copper(I) complexes was carried out in order to probe electronic effects on the equilibrium between mu-eta2:eta2-(side-on)-peroxo [Cu(II)2(O2(2-))]2+ and bis(mu-oxo) [Cu(III)2(O(2-))2] species formed upon reaction with O2. [Cu(I)(R-PYAN)(MeCN)n]B(C6F5)4 (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine, R = NMe2, OMe, H, and Cl) (1R) vary over a narrow range in their Cu(II)/Cu(I) redox potentials (E(1/2) vs Fe(cp)2(+/0) = -0.40 V for 1(NMe2), -0.

View Article and Find Full Text PDF

The considerable recent advances in copper-dioxygen coordination chemistry demonstrate the existence of a variety of dioxygen-derived Cu(n)-O(2) complexes, forming a basis for discussion of alternate oxidant types in copper chemistry and biochemistry. Peroxo complexes may react as nucleophilic reagents, and several types of electrophilic mono- or dicopper (hydro)peroxides exist. Side-on peroxo-dicopper(II) species effect aromatic hydroxylations, including phenolic substrates, in model systems and in the enzyme tyrosinase.

View Article and Find Full Text PDF

A new tridentate ligand, PYAN, is employed to investigate solvent influences for dioxygen reactivity with [Cu(PYAN)(MeCN)]B(C(6)F(5))(4) (1). Stopped-flow kinetic studies confirm that the adducts [[u(II)(PYAN)]2)(O(2))][B(C(6)F(5))(4)](2) (2(Peroxo)) and [[u(III)(PYAN)]2)(O)(2)][B(C(6)F(5))(4)](2) (2(Oxo)) are in rapid equilibrium. Thermodynamic parameters for the equilibrium between 2(Peroxo) and 2(Oxo) re as follows: THF, deltaH degrees approximately -15.

View Article and Find Full Text PDF

Copper-dioxygen adducts are important biological oxidants. To gain a better understanding of the underlying chemistries of such species, we report on a series of Cu2II-O2 complexes, [{CuII(MePY2)R'}2(O2)](B(C6F5)4)2 (1R') (where (MePY2)R' is a 4-pyridyl substituted bis[2-(2-(4-R'-pyridyl)ethyl]methylamine; R' = H, MeO, Me2N; Zhang, C. X.

View Article and Find Full Text PDF