J Plast Surg Hand Surg
October 2024
Objective: To investigate the anatomical basis and clinical efficiency of the advancement distance in dorsal digital V-Y advancement flap.
Materials And Methods: Thirty-four fingers in 11 fresh adult hand specimen were selected, V-Y flap was performed with the digital artery as vascular pedicle, and the advancement distance was measured. The relationship between the distance and extensibility of skin, sliding degree of subcutaneous superficial fascia, angular displacement of digital arterial dorsal branch, elasticity of digital artery was discussed.
Background: Diabetes mellitus (DM) is a prevalent chronic condition that influences spine surgery outcomes. The impact of type Ⅰ and type Ⅱ DM on adverse postoperative outcomes, mortality, prolonged length of stay (LOS), and increased in-hospital costs following cervical fusion surgery remains unclear in the past decade. This study aims to determine the specific effect of different classifications of DM on postoperative complications in patients experiencing cervical fusion surgery.
View Article and Find Full Text PDFPurpose: Osteoarthritis (OA) is a joint disease with a long and slow course, which is one of the major causes of disability in middle and old-aged people. This study was dedicated to excavating the cellular senescence-associated biomarkers of OA.
Methods: The Gene Expression Omnibus (GEO) database was searched and five datasets pertaining to OA were obtained.
CD8 T cell exhaustion (T) impairs the ability of T cells to clear chronic infection or cancer. While T are hypofunctional, some T retain effector gene signatures, a feature associated with killer lectin-like receptor (KLR) expression. Although KLR T (T) may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood.
View Article and Find Full Text PDFT cell exhaustion (T ) impairs the ability of T cells to clear chronic infection or cancer. While exhausted T cells are hypofunctional, some exhausted T cells retain effector gene signatures, a feature that is associated with expression of KLRs (killer lectin-like receptors). Although KLR T cells may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood.
View Article and Find Full Text PDFBackground: Intracranial hemangiopericytoma is a rare disease and surgery is the mainstay treatment. Although postoperative adjuvant radiotherapy is often used, there are no reports comparing different radiotherapy techniques. The purpose of this study is to analyze the impact of post-operative radiotherapy and different radiotherapy technique on the results in patients with intracranial hemangiopericytoma (HPC).
View Article and Find Full Text PDFBackground: Polysyndactyly (PSD) is an autosomal dominant genetic limb malformation caused by mutations.
Methods: Whole exome sequencing and Sanger sequencing were used to determine the mutations in PSD patients. Luciferase reporter assay was performed to determine the effect of GLI3 mutation on its transcriptional activity.
Identifying and visualizing transcriptionally similar cells is instrumental for accurate exploration of the cellular diversity revealed by single-cell transcriptomics. However, widely used clustering and visualization algorithms produce a fixed number of cell clusters. A fixed clustering 'resolution' hampers our ability to identify and visualize echelons of cell states.
View Article and Find Full Text PDFEosinophils and neutrophils are critical for host defense, yet gaps in understanding how granulocytes differentiate from hematopoietic stem cells (HSCs) into mature effectors remain. The pseudokinase tribbles homolog 1 (Trib1) is an important regulator of granulocytes; knockout mice lack eosinophils and have increased neutrophils. However, how Trib1 regulates cellular identity and function during eosinophilopoiesis is not understood.
View Article and Find Full Text PDFActivating mutations in the gene encoding the cell-cell contact signaling protein Notch1 are common in human T cell acute lymphoblastic leukemias (T-ALLs). However, expressing mutant alleles in mice fails to efficiently induce the development of leukemia. We performed a gain-of-function screen to identify proteins that enhanced signaling by leukemia-associated Notch1 mutants.
View Article and Find Full Text PDFActivating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated Kras transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML).
View Article and Find Full Text PDFTrib2 is highly expressed in human T cell acute lymphoblastic leukemia (T-ALL) and is a direct transcriptional target of the oncogenic drivers Notch and TAL1. In human TAL1-driven T-ALL cell lines, Trib2 is proposed to function as an important survival factor, but there is limited information about the role of Trib2 in primary T-ALL. In this study, we investigated the role of Trib2 in the initiation and maintenance of Notch-dependent T-ALL.
View Article and Find Full Text PDFThe prognosis and prediction of axillary lymph node (ALN) metastases in breast cancer is traditionally based upon the biomarkers status of the primary tumor. Some retrospective studies showed significant discordance in receptor expression between primary and metastatic tumors. We aim to prospectively assess the incidence of discordant biomarkers status in primary tumor and ALN metastases and to evaluate the role of ALN biopsies for the reassessment of receptor status.
View Article and Find Full Text PDFNotch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities.
View Article and Find Full Text PDFThe leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset.
View Article and Find Full Text PDFBackground: The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival.
Principal Findings: We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture.
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells.
View Article and Find Full Text PDFNotch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown.
View Article and Find Full Text PDFPoint mutations that trigger ligand-independent proteolysis of the Notch1 ectodomain occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL) but are rare in murine T-ALL, suggesting that other mechanisms account for Notch1 activation in murine tumors. Here we show that most murine T-ALLs harbor Notch1 deletions that fall into 2 types, both leading to ligand-independent Notch1 activation. Type 1 deletions remove exon 1 and the proximal promoter, appear to be RAG-mediated, and are associated with mRNA transcripts that initiate from 3' regions of Notch1.
View Article and Find Full Text PDFTribbles homolog 2 (Trib2) is a pseudokinase that induces acute myelogenous leukemia (AML) in mice and is highly expressed in a subset of human AML. Trib2 has 3 distinct regions, a proline-rich N-terminus, a serine/threonine kinase homology domain, and a C-terminal constitutive photomorphogenesis 1 (COP1)-binding domain. We performed a structure-function analysis of Trib2 using in vitro and in vivo assays.
View Article and Find Full Text PDFTrib1, Trib2, and Trib3 are mammalian homologs of Tribbles, an evolutionarily conserved Drosophila protein family that mediates protein degradation. Tribbles proteins function as adapters to recruit E3 ubiquitin ligases and enhance ubiquitylation of the target protein to promote its degradation. Increased Trib1 and Trib2 mRNA expression occurs in human myeloid leukemia and induces acute myeloid leukemia in mice, whereas Trib3 has not been associated with leukemia.
View Article and Find Full Text PDFPrecise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage.
View Article and Find Full Text PDFGain-of-function NOTCH1 mutations are found in 50%-70% of human T cell acute lymphoblastic leukemia/lymphoma (T-ALL) cases. Gain-of-function NOTCH1 alleles that initiate strong downstream signals induce leukemia in mice, but it is unknown whether the gain-of-function NOTCH1 mutations most commonly found in individuals with T-ALL generate downstream signals of sufficient strength to induce leukemia. We addressed this question by expressing human gain-of-function NOTCH1 alleles of varying strength in mouse hematopoietic precursors.
View Article and Find Full Text PDFGain-of-function experiments have demonstrated the potential of Notch signals to expand primitive hematopoietic progenitors, but whether Notch physiologically regulates hematopoietic stem cell (HSC) homeostasis in vivo is unclear. To answer this question, we evaluated the effect of global deficiencies of canonical Notch signaling in rigorous HSC assays. Hematopoietic progenitors expressing dominant-negative Mastermind-like1 (DNMAML), a potent inhibitor of Notch-mediated transcriptional activation, achieved stable long-term reconstitution of irradiated hosts and showed a normal frequency of progenitor fractions enriched for long-term HSCs.
View Article and Find Full Text PDF