Carotenoid cleavage oxygenases (CCOs) cleave carotenoid molecules to produce bioactive products that influence the synthesis of hormones such as abscisic acid (ABA) and strigolactones (SL), which regulate plant growth, development, and stress adaptation. Here, to explore the molecular characteristics of all members of the OsCCO family in rice, fourteen family genes were identified in the genome-wide study. The results revealed that the OsCCO family included one OsNCED and four OsCCD subfamilies.
View Article and Find Full Text PDFSalinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields.
View Article and Find Full Text PDFAboveground biomass (AGB) is a crucial physiological parameter for monitoring crop growth, assessing nutrient status, and predicting yield. Texture features (TFs) derived from remote sensing images have been proven to be crucial for estimating crops AGB, which can effectively address the issue of low accuracy in AGB estimation solely based on spectral information. TFs exhibit sensitivity to the size of the moving window and directional parameters, resulting in a substantial impact on AGB estimation.
View Article and Find Full Text PDFExploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.
View Article and Find Full Text PDFThe information on molecular weight (MW) characteristics of DOM and relevant evolution behaviors during composting are limited. In this study, DOM extracted from co-composting of chicken manure and rice husks were comprehensively analyzed by using high-performance size exclusion chromatography (HPSEC) combined with a two-dimensional correlation spectroscopy (2D COS) to explore the evolution characteristics of MW of compost DOM. The HPSEC detected at UV of 254 nm and at fluorescence (FL) Ex/Em wavelengths (315/410, 270/455 nm) all showed a gradual increase in both weight-average and number-average MW for DOM, suggesting that the large MW fractions were continuously generated and polymerized during composting.
View Article and Find Full Text PDFCompost produced by straw and livestock and poultry manure under the action of micro-organisms is one of the main forms of organic alternative fertilizers at present. The present study explored the effects of compost substitution on soil greenhouse gas emissions, soil microbial community changes, and wheat yield to determine the best substitution ratio for reducing greenhouse gas emissions and soil microbial community changes and increasing wheat yield. Using the single-factor randomized block trial design, four treatments were employed, the characteristics of greenhouse gas emission, yield and yield components, and the changes of soil microbial community under different compost substitution ratio in the whole wheat growing season were determined by static box-gas chromatography.
View Article and Find Full Text PDFA distinct platinum oxide nanocluster (PtO ) was developed, consisting of only Pt-O bond by a defect-engineered Al metal-organic framework (MOF) (BIT-72) with superior formaldehyde (HCHO) degradation activity and stability. With only 0.015 wt % Pt loading, PtO @BIT-72-DE could degrade HCHO with 100 % conversion continuously for at least 200 h under HCHO concentration of 25 ppm and gas hourly space velocity of 60000 mL g h at room temperature.
View Article and Find Full Text PDFPhotocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N into NH. Here, utilizing metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N molecules adsorbed on Au surfaces.
View Article and Find Full Text PDFThe production of hydrogen through electrolysis is considered as a feasible strategy to quench the world's clean-energy thirst. Compared with water electrolysis, urea electrolysis presents a more promising prospect in the way that it could carry out sewage treatment as well as energy-efficient hydrogen production at the same time. Herein, highly porous pomegranate-like Ni/C was synthesized from multivariate metal-organic frameworks and exhibits excellent hydrogen evolution activity with an unprecedented low overpotential of 40 mV at the current density of 10 mA cm in 1 M KOH, ranking among the best earth-abundant electrocatalysts deposited on glassy carbon electrodes reported to date.
View Article and Find Full Text PDFMultivariate metal-organic frameworks with active Fe/Ni building blocks that are spatially arranged in an open structure are synthesized and explored for oxygen evolution reaction. The heterogeneity and porosity of this system prove to show synergy effect and give low onset overpotential at 170 mV. These MOFs are further fabricated into thin films over nickel foam by controlled electrochemical deposition to improve the surface conductivity and the overall stability.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have received increasing attention as promising electrode materials in supercapacitors (SCs). Yet poor conductivity in most MOFs largely thwarts their capacitance and/or rate performance. In this work, an effective strategy was developed to reduce the bulk electric resistance of MOFs by interweaving MOF crystals with polyaniline (PANI) chains that are electrochemically deposited on MOFs.
View Article and Find Full Text PDFThe availability of crop residues in China is reviewed in this article. The definition of crop residues is clarified as the total byproducts of field production and processing industry thereafter, and methodology for evaluating crop residues is discussed. Based on literature, the progress on the crop residue assessment is addressed.
View Article and Find Full Text PDFThe effects of different nitrogenous fertilizer on carbon metabolism in Glehnia littoralis were studied under the field condition. The results showed that the Sucrose Phosphat Synthase (SPS) activities and the content of soluble sugar in leaves showed the pattern of single peak curve during the growth period, and both highest level were similary appeared in the middle stage. The suitable rate of nitrogenous fertilizer can improve the SPS activities, the content of soluble sugar, the root Sucrose Synthase (SS) activities, and also kept low level of leaves soluble sugar in harvest.
View Article and Find Full Text PDF