Polymers (Basel)
November 2024
Most current laser sintering (LS) machines for polymer powders operate with a maximum bed temperature of 200 °C, limiting the use of higher melting polymers like polyethylene terephthalate (PET), which melts at ~250 °C. Using bed temperatures of ≤200 °C leads to severe part-distortion due to curl and warpage during the sintering process. The paper presents a processing method for LS at low bed temperatures, using an in situ printed anchor film to conquer curl and warpage.
View Article and Find Full Text PDFVitrimers are a new class of heterogeneous polymers that combine the best features of thermosets with those of thermoplastics. The introduction of cross-links strongly changes the viscoelastic behavior of vitrimer materials. However, the characterization and understanding of the nanostructures and interfaces in vitrimers resulting from dynamic cross-linking formation remain a major challenge.
View Article and Find Full Text PDFPolyolefins are the most widely used plastics accounting for a large fraction of the polymer waste stream. Although reusing polyolefins seems to be a logical choice, their recycling level remains disappointingly low. This is mainly due to the lack of large-scale availability of efficient and inexpensive compatibilizers for mixed polyolefin waste, typically consisting of high-density polyethylene (HDPE) and isotactic polypropylene (PP) that, despite their similar chemical hydrocarbon structure, are immiscible.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Despite progress in the field of electrochromic devices, developing structural color-tunable photonic systems having both high transparency and flexibility remains challenging. Here, an ink-deposited transparent electrochromic structural colored foil displaying reflective colors, tuned by an integrated heater, is prepared in a single-substrate method. Efficient and homogeneous heating is induced by a gravure printed silver nanowire-based substrate, delivering an electrothermal response upon applying an electrical potential.
View Article and Find Full Text PDFThe iridescence of structural color and its polarization characteristics originate from the nanoscale organization of materials. A major challenge in materials science is generating the bright, lustrous hues seen in nature through nanoscale engineering, while simultaneously controlling interaction of the material with different light polarizations. In this work, a suitable chiral nematic liquid crystal elastomer ink is synthesized for direct ink writing, which self-assembles into a chiral photonic structure.
View Article and Find Full Text PDFWe report on the wavelength-selective photopolymerization of a hybrid acrylate-oxetane cholesteric liquid crystal monomer mixture. By controlling the sequence and rate of the orthogonal free-radical and cationic photopolymerization reactions, it is possible to control the degree of phase separation in the resulting liquid crystal interpenetrating networks. We show that this can be used to tune the reflective color of the structurally colored coatings produced.
View Article and Find Full Text PDFA supramolecular strategy is used for oriented positioning of proteins on surfaces. A viologen-based guest molecule is attached to the surface, while a naphthol guest moiety is chemoselectively ligated to a yellow fluorescent protein. Cucurbit[8]uril (CB[8]) is used to link the proteins onto surfaces through specific charge-transfer interactions between naphthol and viologen inside the CB cavity.
View Article and Find Full Text PDFAdopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene.
View Article and Find Full Text PDFMicromechanical properties of single elastic fibers and fibrillin-microfibrils, isolated from equine ligamentum nuchae using chemical and enzymatic methods, were determined with atomic force microscopy (AFM). Young's moduli of single elastic fibers immersed in water, devoid of or containing fibrillin-microfibrils, were determined using bending tests. Bending freely suspended elastic fibers on a micro-channeled substrate by a tip-less AFM cantilever generated a force versus displacement curve from which Young's moduli were calculated.
View Article and Find Full Text PDFThe mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers.
View Article and Find Full Text PDFMicromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus.
View Article and Find Full Text PDFA new micromechanical technique was developed to study the mechanical properties of single collagen fibrils. Single collagen fibrils, the basic components of the collagen fiber, have a characteristic highly organized structure. Fibrils were isolated from collagenous materials and their mechanical properties were studied with atomic force microscopy (AFM).
View Article and Find Full Text PDF