Ground layer adaptive optics (GLAO) has been widely employed in wide-field observations with ground-based telescopes. However, the present evaluation of GLAO performance lacks a criterion in terms of turbulence layer correction. This deficiency results in a significant gap in understanding the effectiveness of GLAO correction at different heights of the turbulence layer, thereby hindering the optimization of GLAO system performance.
View Article and Find Full Text PDFThe correlation Shack-Hartmann wavefront sensor (SHWFS) is widely used in many fields in addition to solar adaptive optics. The requirement for the SHWFS dynamic range increases with the diameter of the telescope, which means a larger detector array is needed. However, the size of the detector would be restricted by the high frame rate needed for the solar observation.
View Article and Find Full Text PDFMulti-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction.
View Article and Find Full Text PDF