Regulating the distribution of surface elements in lithium-rich cathode materials can effectively change the electrochemical performance of cathode materials. Considering that the enrichment of Mn element on the surface is the main reason for the irreversible phase transition and dissolution of its surface structure, which in turn is the main reason for performance degradation. Based on the molten salt-assisted sintering method, a lithium rich cathode material with surface rich Ni and Co is designed and prepared.
View Article and Find Full Text PDFA practical and effective approach to improve the cycle stability of high-energy density lithium metal batteries (LMBs) is to selectively regulate the growth of the lithium anode. The design of desolvation and lithiophilic structure have proved to be significant means to regulate the lithium deposition process. Here, a fluorinated polymer lithiophilic separator (LS) loaded with a metal-organic framework (MOF801) is designed, which facilitates the rapid transfer of Li within the separator owing to the MOF801-anchored PF from the electrolyte, Li deposition is confined in the plane resulting from the polymer fiber layer rich in lithiophilic groups (C─F).
View Article and Find Full Text PDFPolyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.
View Article and Find Full Text PDF