Publications by authors named "Lanlan Zhai"

i-two-dimensional perovskite has been widely used in blue perovskite light-emitting diodes. However, the performance of these devices is still hampered by random phase distribution, nonradiative recombination, and imbalanced carrier transport. In this work, an effective strategy is proposed to mitigate these limitations by inserting lithium salts at the interfaces between the hole transport layer (HTL) and the perovskite layer.

View Article and Find Full Text PDF

NiO-based two-dimensional perovskite solar cells (2D-PSCs) have the advantages of low fabrication temperature, suitable energy level matching, suppressed hysteresis, and superior stability, while the poor interfacial contacts between NiO and perovskite layers limit the perovskite film growth and charge transfer. Herein, a simple molecule, urea, was used as a molecular modifier to form bifacial passivation on the buried interface of NiO/perovskite, resulting in better interfacial contact and efficient bifacial passivation. We demonstrated that efficient bifacial passivation mainly comes from strong interactions between urea and NiO or perovskite, which make urea a molecular bridge for smoother charge transfer.

View Article and Find Full Text PDF

Utilizing bromine-based quasi-two-dimensional (quasi-2D) perovskite is a feasible strategy to achieve efficient and stable blue perovskite light-emitting diodes (PeLEDs). However, dimension discretization is prone to emerge due to the irregular phase distribution and massive defects in the perovskite system. Here, we introduce alkali-salt to modulate the phase distribution for reducing the = 1 phase and propose a novel Lewis base to serve as a passivating agent to decrease defects.

View Article and Find Full Text PDF

Solvent polishing engineering is adopted to remove the relatively loose defect layer without damaging carrier injection in blue perovskite light-emitting-diodes (PeLEDs). Synchronously, the polishing effects depending on the solvents are discussed in detail. Finally, optimized blue PeLEDs were obtained with a maximum external quantum efficiency of 5.

View Article and Find Full Text PDF

As the essential component of a quantum dot-sensitized solar cell (QDSC), the counter electrode (CE) plays an important role in electron transfer and catalytic reduction acquisition throughout the device. A novel route to design multilayer functionalized CuS thin films as CEs with high catalytic activity and enhanced stability, as well as large specific surface area and high conductivity, is presented. Firstly, Mo-based films were prepared by magnetron sputtering on a glass substrate, and then porous CuZnMo conductive films were formed by etching with hydrochloric acid.

View Article and Find Full Text PDF

Wurtzite CuInS2 nanoleaves were synthesized by Cu1.94S-assisted growth. By observing the evolution of structures and phases during the growth process, Cu1.

View Article and Find Full Text PDF

Cu2ZnSnS4 is a promising solar absorbing material in solar cells due to its high absorption coefficient and abundance on earth. We have demonstrated that wurtzite Cu2ZnSnS4 nanoleaves could be synthesized through a facile solution-based method. Detailed investigation of the growth process indicates that α-Cu2S nanocrystals are first formed and then serve as a catalyst to introduce the Cu, Zn, and Sn species into the nanoleaf growth for fast ionic conduction.

View Article and Find Full Text PDF

Single crystalline wurtzite ternary and quaternary semiconductor nanoribbons (CuInS(2), CuIn(x)Ga(1-x)S(2)) were synthesized through a solution-based method. The structure and composition of the nanoribbons were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), the corresponding fast Fourier transform (FFT) and nanoscale-resolved elemental mapping. Detailed investigation of the growth mechanism by monitoring the structures and morphologies of the nanoribbons during the growth indicates that Cu(1.

View Article and Find Full Text PDF

We have demonstrated that quaternary Cu(x)In(x)Zn(2(1-x))S(2) nanobelts could be synthesized through a facile solution-based method. The composition and band gap of quaternary nanobelts can be tuned within the broad range by changing the relative ratio of precursors. The growth mechanism of quaternary nanobelts was deduced to be catalyst-assisted growth.

View Article and Find Full Text PDF