Angelica L. has attracted global interest for its traditional medicinal uses and commercial values. However, few studies have focused on the metabolomic differences among the Angelica species.
View Article and Find Full Text PDFMultiple myeloma (MM) is a common malignant hematologic neoplasm, and the involvement of epigenetic modifications in its development and drug resistance has received widespread attention. Ferroptosis, a new ferroptosis-dependent programmed death mode, is closely associated with the development of MM. The novel methyltransferase inhibitor DCG066 has higher cell activity, but its mechanism of action in MM has not been clarified.
View Article and Find Full Text PDFButylphthalide is one of the first-line drugs for ischemic stroke therapy, while no biosynthetic enzyme for butylphthalide has been reported. Here, we present a haplotype-resolved genome of , a long-cultivated and phthalide-rich medicinal plant in Apiaceae. On the basis of comprehensive screening, four Fe(II)- and 2-oxoglutarate-dependent dioxygenases and two CYPs were mined and further biochemically verified as phthalide C-4/C-5 desaturases (P4,5Ds) that effectively promoted the forming of ()-3--butylphthalide and butylidenephthalide.
View Article and Find Full Text PDFBackground: L (RXLD) has been demonstrated with good clinical effects and medicinal value in the treatment of cancer and . Specifically, RXLD can eliminate aggregation accumulation, which is depicted as a vital characteristic feature of intracranial tumors. The potential pharmacological mechanisms of anti-glioblastoma (GBM) have not been adequately identified.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs), microRNAs (miRNAs or miRs), and genes are emerging players in cancer progression. In the present study, we explored the roles and interactions of oncogenic lncRNA small nucleolar RNA host gene 1 (SNHG1), miR-376, forkhead box protein K1 (FOXK1), and Snail in hepatocellular carcinoma (HCC). Expression of SNHG1, miR-376, and FOXK1 in HCC was characterized in clinical HCC tissues of 75 patients with HCC.
View Article and Find Full Text PDFGlioma accounts for 40-50% of craniocerebral tumors, whose outcome rarely improves after standard treatment. The development of new therapeutic targets for glioma treatment has important clinical significance. With the deepening of research on gliomas, recent researchers have found that the occurrence and development of gliomas is closely associated with histone modifications, including methylation, acetylation, phosphorylation, and ubiquitination.
View Article and Find Full Text PDF-GlcNAcase (OGA) is the only enzyme responsible for removing -acetyl glucosamine (GlcNAc) attached to serine and threonine residues on proteins. This enzyme plays a key role in -GlcNAc metabolism. However, the structural features of the sugar moiety recognized by human OGA (hOGA) remain unclear.
View Article and Find Full Text PDFGlioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications.
View Article and Find Full Text PDFα-Glucosidase is known to catalyze the digestion of carbohydrates and release free glucose into the digestive tract. Protein tyrosine phosphatase 1B (PTP1B) is engaged in the dephosphorylation of the insulin receptor and regulation of insulin sensitivity. Therefore, dual antagonists by targeting both α-glucosidase and PTP1B may be potential candidates for type 2 diabetes therapy.
View Article and Find Full Text PDFAlthough great progress has been made in treatment regimens, gliomas are still incurable and the 5-year survival remains poor. Studies focusing on molecules that regulate tumorigenesis or tumor immunity may provide potential therapeutic strategies for patients with glioma. B7-H6 is selectively expressed in tumor cells and plays vital roles in host immune responses.
View Article and Find Full Text PDFAberrant enzymatic activities or expression profiles of epigenetic regulations are therapeutic targets for cancers. Among these, histone 3 lysine 9 methylation (H3K9Me2) and global de-acetylation on histone proteins are associated with multiple cancer phenotypes including leukemia, prostatic carcinoma, hepatocellular carcinoma and pulmonary carcinoma. Here, we report the discovery of the first small molecule capable of acting as a dual inhibitor targeting both G9a and HDAC.
View Article and Find Full Text PDFLysine methyltransferase G9a regulates the transcription of multiple genes by primarily catalyzing mono- and di-methylation of histone H3 lysine 9, as well as several non-histone lysine sites. An attractive therapeutic target in treating leukemia, knockout studies of G9a in mice have found dramatically slowed proliferation and self-renewal of acute myeloid leukemia (AML) cells due to the attenuation of HoxA9-dependent transcription. In this study, a series of compounds were identified as potential inhibitors through structure-based virtual screening.
View Article and Find Full Text PDFL-Rhamnulose (6-deoxy-L-arabino-2-hexulose) and L-fuculose (6-deoxy-L-lyxo-2-hexulose) were prepared from L-rhamnose and L-fucose by a two-step strategy. In the first reaction step, isomerization of L-rhamnose to L-rhamnulose, or L-fucose to L-fuculose was combined with a targeted phosphorylation reaction catalyzed by L-rhamnulose kinase (RhaB). The by-products (ATP and ADP) were selectively removed by silver nitrate precipitation method.
View Article and Find Full Text PDFStudies of rare ketoses have been hampered by a lack of efficient preparation methods. A convenient, efficient, and cost-effective platform for the facile synthesis of ketoses is described. This method enables the preparation of difficult-to-access ketopentoses and ketohexoses from common and inexpensive starting materials with high yield and purity and without the need for a tedious isomer separation step.
View Article and Find Full Text PDFThe catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use.
View Article and Find Full Text PDF