Publications by authors named "Lanhai He"

A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve.

View Article and Find Full Text PDF

We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses.

View Article and Find Full Text PDF

We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime.

View Article and Find Full Text PDF

Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule.

View Article and Find Full Text PDF

Solvent interactions, particularly hydration, are vital in chemical and biochemical systems. Model systems reveal microscopic details of such interactions. We uncover a specific hydrogen-bonding motif of the biomolecular building block indole (CHN), tryptophan's chromophore, in water: a strong localized N-H···OH hydrogen bond, alongside unstructured solvent interactions.

View Article and Find Full Text PDF

Intermolecular interactions involving aromatic rings are ubiquitous in biochemistry and they govern the properties of many organic materials. Nevertheless, our understanding of the structures and dynamics of aromatic clusters remains incomplete, in particular for systems beyond the dimers, despite their high presence in many macromolecular systems such as DNA and proteins. Here, we study the fragmentation dynamics of benzene trimer that represents a prototype of higher-order aromatic clusters.

View Article and Find Full Text PDF

We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.

View Article and Find Full Text PDF

Methyl vinyl ketone (CHO) is a volatile, labile organic compound of importance in atmospheric chemistry. We prepared a molecular beam of methyl vinyl ketone with a rotational temperature of 1.2(2) K and demonstrated the spatial separation of the and conformers of methyl vinyl ketone using the electrostatic deflector.

View Article and Find Full Text PDF

Spatial separation of water dimers from water monomers and larger water clusters through the electric deflector is presented. A beam of water dimers with 93% purity and a rotational temperature of 1.5 K was obtained.

View Article and Find Full Text PDF

Strong field double ionization that triggers the chemical bond rearrangement of CHCl is investigated by impulsive control of the alignment of molecules. The alignment and laser intensity dependent H and H yields in linearly polarized femtosecond laser have been measured, and the obtained data show that the maximum signal of H appears at the laser polarization parallel to the C-Cl axis of molecules and H species are more likely to eject at the laser polarization parallel to the C-Cl axis at low laser intensity while the H signal peaks at laser polarization perpendicular to the C-Cl axis at high laser intensity. The measurements indicate that electrons from HOMO - 1 and HOMO - 2 orbitals have been ionized for the generation of bond rearrangement at different laser intensity.

View Article and Find Full Text PDF

Strong field sequential ionization of symmetric-top CHI molecules is studied experimentally by using a combined method of femtosecond laser-induced impulsive alignment and time-of-flight mass spectrometry. Both alignment- and angular-dependent ion yields have been measured, and the sequential ionization of a multielectron has been discussed. It is found that the maximum ionization occurs when the polarization of probe laser is perpendicular to the internuclear axis of molecules, and the signal of fragment ion peaks at the polarization of the probe laser is parallel to the internuclear axis of molecules.

View Article and Find Full Text PDF

Rotational dynamics of quantum state selected and unselected CHI molecules in intense femtosecond laser fields has been studied. The orientation and alignment evolutions are derived from a pump-probe measurement and in good agreement with the numerical results from the time-dependent Schrödinger equation (TDSE) calculation. The different rotational transitions through nonresonant Raman process have been assigned from the Fourier analysis of the orientation and alignment revivals.

View Article and Find Full Text PDF

Hexapole state selection is used to prepare CH3I molecules in the |JKM〉 = |1±1∓1〉 state. The molecules are aligned in a strong 800 nm laser field, which is linearly polarised perpendicular to the weak static extraction field E of the time of flight setup. The molecules are subsequently ionised by a second time delayed probe laser pulse.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqctd3ehh8m305h49h9h98jl3fgprmv8n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once