Publications by authors named "Langtao Xu"

Image-guided thermal ablation (TA), which is less invasive, has been widely applied for treating various kinds of tumors. However, TA still poses the potential risk of thermal damage to sensitive tissue nearby. Therefore, an adjunctive thermoprotective hydrodissection technique with constant injection of 5% glucose (5% Glu) has currently been adopted for clinical application, but this may be hazardous to humans.

View Article and Find Full Text PDF

Due to the immunosuppressive tumor microenvironment (ITM) resulting from tumor-associated macrophages (TAMs) and regulatory T cells, immune checkpoint blockade and vaccine therapies often lead to an inadequate immune response. Recently, cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon gene (cGAS/STING)-mediated innate immunity has emerged as a promising cancer therapeutic, as STING pathway activation could promote dendritic cells (DCs) maturation and tumor-specific cytotoxic T lymphocyte (CTL) and natural killer (NK) cell infiltration. Herein, multifunctional hybrid exosomes for cGAS/STING activation are designed by fusing genetically engineered exosomes carrying CD47 derived from tumor cells with exosomes from M1 macrophages, which are further encapsulated with DNA-targeting agent (SN38) and STING-agonist (MnO).

View Article and Find Full Text PDF

Biofilms are closely associated with the tough healing and dysfunctional inflammation of chronic wounds. Photothermal therapy (PTT) emerged as a suitable alternative which could destroy the structure of biofilms with local physical heat. However, the efficacy of PTT is limited because the excessive hyperthermia could damage surrounding tissues.

View Article and Find Full Text PDF

3D tumor models are emerging as valuable tools for drug screening and nanoparticle based personalized cancer treatments. The main challenges in building microfluidic chip-based 3D tumor models currently include the development of bioinks with high bioactivity and the reproduction of the key tumor extracellular matrix (ECM) with heterogeneous tumor microenvironments. In this study, we designed a triangular multi-chamber tumor-on-a-chip (TM-CTC) platform, which consisted of three circular chambers at the vertices of a triangle connected by three rectangular chambers; it significantly improved the culture efficiency of 3D tumor tissues.

View Article and Find Full Text PDF

Surgical resection remains the mainstay of melanoma treatment. However, due to the difficulties in controlling tumor recurrence and wound healing simultaneously, high postoperative recurrence rates and wound reconstruction remain the most significant challenges. As a result, a heterogeneous hybrid hydrogel scaffold was designed in this work to achieve sequential photothermal therapy and chemotherapy for melanoma recurrence inhibition and wound healing.

View Article and Find Full Text PDF

The traditional evaluation of nanoparticles (NPs) is mainly based on 2D cell culture and animal models. However, these models are difficult to accurately represent human tumor microenvironment (TME) and fail to systematically study the complex transportation of NPs, thus limiting the translation of nano-drug formulations to clinical studies. This study reports a tumor model fabricated via 3D bioprinting with adipose decellularized extracellular matrix (ECM) enhanced hybrid bioink.

View Article and Find Full Text PDF