Publications by authors named "Langridge W"

Around 285 million people worldwide currently have type 2 diabetes and it is projected that this number will be surpassed by 2030. Therefore, it is of the utmost importance to enhance our comprehension of the disease's development. The regulation of diet, obesity, and inflammation in type 2 diabetes is believed to play a crucial role in enhancing insulin sensitivity and reducing the risk of onset diabetes.

View Article and Find Full Text PDF

Introduction: Peritoneal metastases from colorectal cancer (CRC) present a significant clinical challenge with poor prognosis, often unresponsive to systemic chemotherapy. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment approach for select patients. The use of curcumin, a natural compound with antitumor properties, in HIPEC is of interest due to its lower side effects compared to conventional drugs and potential for increased efficacy through direct delivery to the peritoneal cavity.

View Article and Find Full Text PDF

Mucosal vaccines protect against respiratory virus infection by stimulating the production of IgA antibodies that protect against virus invasion of the mucosal epithelium. In this study, a novel protein subunit mucosal vaccine was constructed for protection against infection by the beta coronavirus SARS-CoV-2. The vaccine was assembled by linking a gene encoding the SARS-CoV-2 virus S1 angiotensin converting enzyme receptor binding domain (ACE-2-RBD) downstream from a DNA fragment encoding the cholera toxin B subunit (CTB), a mucosal adjuvant known to stimulate vaccine immunogenicity.

View Article and Find Full Text PDF

Background: A recent study from our group identified Hispanic race/ethnicity as an independent predictor of peritoneal carcinomatosis (PC) in gastric cancer. We sought to identify the tumor factors that might contribute to this strong association in Hispanics.

Methods: California Cancer Registry data were used to identify patients diagnosed with gastric adenocarcinoma from 2004 to 2014.

View Article and Find Full Text PDF

Purpose: , a culturally sensitive diabetes education program, improves glycemic control in Hispanics with type 2 diabetes. The program emphasized diet, physical activity, and other factors important for glycemic control. However, the individual contributions of these education factors are unclear.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) peritoneal carcinomatosis (PC) is associated with a poor prognosis. Although grade, histology, and stage are associated with PC, the cumulative risk of PC when multiple risk factors are present is unknown. This study aimed to develop a cumulative GCPC risk score based on individual demographic/tumor characteristics.

View Article and Find Full Text PDF

Autoantigen-specific immunotherapy promises effective treatment for devastating tissue specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D). Because activated dendritic cells (DCs) stimulate the differentiation of autoreactive T cells involved in the initiation of autoimmunity, blocking the activation of DCs may be an effective strategy for inhibiting tissue specific autoimmunity. Following this approach, immature DCs were shown to remain inactive after treatment with chimeric fusion proteins composed of the cholera toxin B subunit adjuvant linked to autoantigens like proinsulin (CTB-INS).

View Article and Find Full Text PDF

Vimentin is an intermediate filament protein traditionally considered to be an intracellular protein with a structural role. However, recent evidence suggests that vimentin can also be found outside the cell in disease conditions such as cancer, traumatic tissue injury, and inflammation. Extracellular vimentin was previously found to stimulate innate immunity by increasing monocyte and macrophage ability to kill bacteria.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an incurable, systemic autoimmune disease that decreases quality of life and can lead to severe disability. While there are many medications available to treat RA, the first-line of therapy is low-dose methotrexate (MTX), a small molecule disease-modifying anti-rheumatic drug (DMARD). MTX is the recommended therapy due to its affordability and efficacy in reducing symptoms in most RA patients.

View Article and Find Full Text PDF

Cholera toxin B subunit fusion to autoantigens such as proinsulin (CTB-INS) down regulate dendritic cell (DC) activation and stimulate synthesis of DC immunosuppressive cytokines. Recent studies of CTB-INS induction of immune tolerance in human DCs indicate that increased biosynthesis of indoleamine 2,3-dioxygenase (IDO1) may play an important role in CTB-INS vaccine suppression of DC activation. Studies in murine models suggest a role for transforming growth factor beta (TGF-β) in the stimulation of IDO1 biosynthesis, for the induction of tolerance in DCs.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-β) is a pleiotropic cytokine present in vertebrate and invertebrate organisms that functions in numerous physiological and pathological processes. TGF-β impacts all the cells of the immune system, and of the three known TGF-β isoforms, TGF-β1 is the predominant isoform expressed in immune cells. TGF-β1 is known to play a pivotal role in the function of all immune cells especially in the regulation of T cell development and in the induction of immunological tolerance in dendritic cells (DCs).

View Article and Find Full Text PDF

Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs).

View Article and Find Full Text PDF

Dendritic cells (DCs) are the dominant class of antigen-presenting cells in humans and are largely responsible for the initiation and guidance of innate and adaptive immune responses involved in maintenance of immunological homeostasis. Immature dendritic cells (iDCs) phagocytize pathogens and toxic proteins and in endosomal vesicles degrade them into small fragments for presentation on major histocompatibility complex (MHC) II receptor molecules to naïve cognate T cells (Th0). In addition to their role in stimulation of immunity, DCs are involved in the induction and maintenance of immune tolerance toward self-antigens.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes joint pain, inflammation, and loss of function. Disease pathogenesis involves activation and proliferation of autoreactive pro-inflammatory effector T cells. While the details of RA onset and progression remain controversial, dendritic cell (DC) numbers dramatically increase in the synovial joint tissues of RA patients.

View Article and Find Full Text PDF

A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo.

View Article and Find Full Text PDF

High levels of serum long chain saturated fatty acids (LCSFAs) have been associated with inflammation in type 2 diabetes. Dietary SFAs can promote inflammation, the secretion of IgG antibodies, and secretion of the proinflammatory cytokine IL-1β. This study characterizes anti-LCSFA IgG antibodies from patients with type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • - Indoleamine 2, 3-dioxygenase (IDO) is a key enzyme that breaks down tryptophan, leading to the creation of kynurenines which play significant roles in regulating the immune system and metabolism.
  • - The regulation of IDO activity can influence immune responses, potentially affecting outcomes in situations like infections, cancer, and autoimmune diseases.
  • - This review discusses how IDO can suppress inflammation and immune responses, and it explores the potential impact of vaccines on enhancing immune suppression via increased IDO production in human dendritic cells.
View Article and Find Full Text PDF

Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1).

View Article and Find Full Text PDF

The differentiation of monocytes into macrophages and dendritic cells involves mechanisms for activation of the innate immune system in response to inflammatory stimuli, such as pathogen infection and environmental cues. Epigenetic reprogramming is thought to play an important role during monocyte differentiation. Complementary to cell surface markers, the characterization of monocytic cell lineages by mass spectrometry based protein/histone expression profiling opens a new avenue for studying immune cell differentiation.

View Article and Find Full Text PDF

In this review, we explore the role of dendritic cell subsets in the development of tissue-specific autoimmune diseases. From the increasing list of dendritic cell subclasses, it is becoming clear that we are only at the beginning of understanding the role of these antigen presenting cells in mediating autoimmunity. Emerging research areas for the study of dendritic cell involvement in the onset and inhibition of tissue-specific autoimmunity are presented.

View Article and Find Full Text PDF

Data presented here demonstrate multifunctional vaccination strategies that harness vaccinia virus mediated delivery of a gene encoding an immunoenhanced diabetes autoantigen in combination with complete Freund's adjuvant (CFA) that can maintain safe and durable immunologic homeostasis in NOD mice. Systemic coinoculation of prediabetic mice with recombinant vaccinia virus rVV-CTB::GAD and undiluted or 10-fold diluted CFA demonstrated a significant decrease in hyperglycemia and pancreatic islet inflammation in comparison with control animals during 17-61 and 17-105 weeks of age, respectively. Synergy in these beneficial effects was observed during 43-61 and 61-105 wks of age, respectively.

View Article and Find Full Text PDF

Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes.

View Article and Find Full Text PDF

Type 1 diabetes is an organ-specific autoimmune disease caused by chronic inflammation (insulitis), which damages the insulin producing β-cells of the pancreatic Islets of Langerhans. Dendritic cells (DCs) are generally the first cells of the immune system to process β-cell autoantigens and, by promoting autoreactivity, play a major role in the onset of insulitis. Although no cure for diabetes presently exists, the onset of insulitis can be diminished in the non-obese diabetic (NOD) mouse type 1 diabetes model by inoculation with endogenous β-cell autoantigens.

View Article and Find Full Text PDF

Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response.

View Article and Find Full Text PDF