Publications by authors named "Langfelder P"

Morphology is a cardinal feature of a neuron that mediates its functions, but profiling neuronal morphologies at scale remains a formidable challenge. Here we describe a generalizable pipeline for large-scale brainwide study of dendritic morphology of genetically-defined single neurons in the mouse brain. We generated a dataset of 3,762 3D-reconstructed and reference-atlas mapped striatal D1- and D2- medium spiny neurons (MSNs).

View Article and Find Full Text PDF

Unlabelled: Modifiers of Huntington's disease (HD) include mismatch repair (MMR) genes; however, their underlying disease-altering mechanisms remain unresolved. Knockout (KO) alleles for 9 HD GWAS modifiers/MMR genes were crossed to the Q140 Huntingtin (mHtt) knock-in mice to probe such mechanisms. Four KO mice strongly ( and ) or moderately ( and ) rescue a triad of adult-onset, striatal medium-spiny-neuron (MSN)-selective phenotypes: somatic DNA CAG-repeat expansion, transcriptionopathy, and mHtt protein aggregation.

View Article and Find Full Text PDF

Introduction: Persons living with HIV (PLWH) experience the early onset of age-related illnesses, even in the setting of successful human immunodeficiency virus (HIV) suppression with highly active antiretroviral therapy (HAART). HIV infection is associated with accelerated epigenetic aging as measured using DNA methylation (DNAm)-based estimates of biological age and of telomere length (TL).

Methods: DNAm levels (Infinium MethylationEPIC BeadChip) from peripheral blood mononuclear cells from 200 PLWH and 199 HIV-seronegative (SN) participants matched on chronologic age, hepatitis C virus, and time intervals were used to calculate epigenetic age acceleration, expressed as age-adjusted acceleration residuals from 4 epigenetic clocks [Horvath's pan-tissue age acceleration residual (AAR), extrinsic epigenetic age acceleration (EEAA), phenotypic epigenetic age acceleration (PEAA), and grim epigenetic age acceleration (GEAA)] plus age-adjusted DNAm-based TL (aaDNAmTL).

View Article and Find Full Text PDF

Background: Genetic study of late-onset Alzheimer's disease (AD) reveals that a rare Arginine-to-Histamine mutation at amino acid residue 47 (R47H) in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) results in increased disease risk. TREM2 plays critical roles in regulating microglial response to amyloid plaques in AD, leading to their clustering and activation surrounding the plaques. We previously showed that increasing human gene dosage exerts neuroprotective effects against AD-related deficits in amyloid depositing mouse models of AD.

View Article and Find Full Text PDF

Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively.

View Article and Find Full Text PDF

Living with HIV infection is associated with early onset of aging-related chronic conditions, sometimes described as accelerated aging. Epigenetic DNA methylation patterns can evaluate acceleration of biological age relative to chronological age. The impact of initial HIV infection on five epigenetic measures of aging was examined before and approximately 3 years after HIV infection in the same individuals (n=102).

View Article and Find Full Text PDF

In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes.

View Article and Find Full Text PDF

Findings about chronic complex diseases are difficult to extrapolate from animal models to humans. We reason that organs may have core network modules that are preserved between species and are predictably altered when homeostasis is disrupted. To test this idea, we perturbed hepatic homeostasis in mice by dietary challenge and compared the liver transcriptome with that in human fatty liver disease and liver cancer.

View Article and Find Full Text PDF

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP.

View Article and Find Full Text PDF

In Huntington's disease (HD), the mutant Huntingtin (mHTT) is postulated to mediate template-based aggregation that can propagate across cells. It has been difficult to quantitatively detect such pathological seeding activities in patient biosamples, e.g.

View Article and Find Full Text PDF

Although Huntington's disease (HD) is a well studied Mendelian genetic disorder, less is known about its associated epigenetic changes. Here, we characterize DNA methylation levels in six different tissues from 3 species: a mouse huntingtin (Htt) gene knock-in model, a transgenic HTT sheep model, and humans. Our epigenome-wide association study (EWAS) of human blood reveals that HD mutation status is significantly (p < 10) associated with 33 CpG sites, including the HTT gene (p = 6.

View Article and Find Full Text PDF

Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch.

View Article and Find Full Text PDF

Events leading to and propagating neurocognitive impairment (NCI) in HIV-1-infected (HIV+) persons are largely mediated by peripheral blood monocytes. We previously identified expression levels of individual genes and gene networks in peripheral blood monocytes that correlated with neurocognitive functioning in HIV+ adults. Here, we expand upon those findings by examining if gene expression data at baseline is predictive of change in neurocognitive functioning 2 years later.

View Article and Find Full Text PDF

Variants of TREM2 are associated with Alzheimer's disease (AD). To study whether increasing TREM2 gene dosage could modify the disease pathogenesis, we developed BAC transgenic mice expressing human TREM2 (BAC-TREM2) in microglia. We found that elevated TREM2 expression reduced amyloid burden in the 5xFAD mouse model.

View Article and Find Full Text PDF

In Huntington's disease (HD) patients and in model organisms, messenger RNA transcriptome has been extensively studied; in contrast, comparatively little is known about expression and potential role of microRNAs. Using RNA-sequencing, we have quantified microRNA expression in four brain regions and liver, at three different ages, from an allelic series of HD model mice with increasing CAG length in the endogenous Huntingtin gene. Our analyses reveal CAG length-dependent microRNA expression changes in brain, with 159 microRNAs selectively altered in striatum, 102 in cerebellum, 51 in hippocampus, and 45 in cortex.

View Article and Find Full Text PDF

Polygenic scores are useful for examining the joint associations of genetic markers. However, because traditional methods involve summing weighted allele counts, they may fail to capture the complex nature of biology. Here we describe a network-based method, which we call weighted SNP correlation network analysis (WSCNA), and demonstrate how it could be used to generate meaningful polygenic scores.

View Article and Find Full Text PDF

Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering.

View Article and Find Full Text PDF

Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age.

View Article and Find Full Text PDF

To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients.

View Article and Find Full Text PDF

The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions.

View Article and Find Full Text PDF

Early hepatic allograft dysfunction (EAD) manifests posttransplantation with high serum transaminases, persistent cholestasis, and coagulopathy. The biological mechanisms are poorly understood. This study investigates the molecular mechanisms involved in EAD and defines a gene expression signature revealing different biological pathways in subjects with EAD from those without EAD, a potential first step in developing a molecular classifier as a potential clinical diagnostic.

View Article and Find Full Text PDF

There are no minimally invasive diagnostic metrics for acute kidney transplant rejection (AR), especially in the setting of the common confounding diagnosis, acute dysfunction with no rejection (ADNR). Thus, though kidney transplant biopsies remain the gold standard, they are invasive, have substantial risks, sampling error issues and significant costs and are not suitable for serial monitoring. Global gene expression profiles of 148 peripheral blood samples from transplant patients with excellent function and normal histology (TX; n = 46), AR (n = 63) and ADNR (n = 39), from two independent cohorts were analyzed with DNA microarrays.

View Article and Find Full Text PDF

Unlabelled: Immunologic dysfunction, mediated via monocyte activity, has been implicated in the development of HIV-associated neurocognitive disorder (HAND). We hypothesized that transcriptome changes in peripheral blood monocytes relate to neurocognitive functioning in HIV+ individuals, and that such alterations could be useful as biomarkers of worsening HAND.

Methods: mRNA was isolated from the monocytes of 86 HIV+ adults and analyzed with the Illumina HT-12 v4 Expression BeadChip.

View Article and Find Full Text PDF