Publications by authors named "Langevin D"

Nanophotonic devices manipulate light at sub-wavelength scales, enabling tasks such as light concentration, routing, and filtering. Designing these devices to achieve precise light-matter interactions using structural parameters and materials is a challenging task. Traditionally, solving this problem has relied on computationally expensive, iterative methods.

View Article and Find Full Text PDF

Metallic gratings can be used as infrared filters, but their performance is often limited by bandwidth restrictions due to metallic losses. In this work, we propose a metallic groove-slit-groove (GSG) structure that overcomes these limitations by exhibiting a large bandwidth, angularly independent, extraordinary optical transmission. Our design achieves high transmission efficiency in the longwave infrared range, driven by Fano-type resonances created through the interaction between the grooves and the central slit.

View Article and Find Full Text PDF

We have studied the coalescence of oil in water emulsions under the influence of gravity. The emulsions were made with alkane oils and surfactants with varying physical chemistry. We chose cationic alkyl trimethylammonium bromides of different chain lengths and nonionic surfactants of ethylene oxide and sugar head groups, including polymeric surfactants.

View Article and Find Full Text PDF

We present a study of moderately stable dilute emulsions. These emulsions are models for water contaminated by traces of oil encountered in many water treatment situations. The purification of water and the elimination of oil rely on the emulsion stability.

View Article and Find Full Text PDF

Effective cross sections of nano-objects are fundamental properties that determine their ability to interact with light. However, measuring them for individual resonators directly and quantitatively remains challenging, particularly because of the very low signals involved. Here, we experimentally measure the thermal emission cross section of metal-insulator-metal nanoresonators using a stealthy hyperuniform distribution based on a hierarchical Poisson-disk algorithm.

View Article and Find Full Text PDF

Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic.

View Article and Find Full Text PDF

We report foam coarsening studies which were performed in the International Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly liquids with controlled liquid fractions between 15 and 50% were investigated to study the transition between bubble growth laws previously reported near the dry limit → 0 and the dilute limit → 1 (Ostwald ripening). We determined the coarsening rates for the driest foams and the bubbly liquids, they are in close agreement with theoretical predictions.

View Article and Find Full Text PDF

In this perspective paper, we highlight the numerous open problems in the topic of stability of emulsions and foams, focusing on the simplest case of dispersions stabilized by surfactants. There are three main destabilization processes, gravity induced evolution, Ostwald ripening, and drops or bubble coalescence, which are analyzed separately. The discussion is restricted to the case of Newtonian fluids, deprived of microstructure, except for the presence of micelles.

View Article and Find Full Text PDF

Bubbles in a liquid rise under gravity and separate to the top. Bubbly liquids exist commonly in nature and play a significant role in energy-conversion, oil and chemical industries. Therefore, understanding how bubbles rise is of great importance.

View Article and Find Full Text PDF

We describe an experiment container with light scattering and imaging diagnostics for experiments on soft matter aboard the International Space Station (ISS). The suite of measurement capabilities can be used to study different materials in exchangeable sample cell units. The currently available sample cell units and future possibilities for foams, granular media, and emulsions are presented in addition to an overview of the design and the diagnostics of the experiment container.

View Article and Find Full Text PDF

The surface light scattering technique is presented, highlighting recent technical improvements and describing studies of various types of surfaces. The technique is non-invasive, but delicate to handle and no commercial instruments are available yet. The technique gives however interesting information difficult to obtain otherwise, for instance on out-of-equilibrium surfaces, surfaces of very low tension, or systems close to solidification.

View Article and Find Full Text PDF

Sub-wavelength metallic grooves behave as Fabry-Perot nanocavities able to resonantly enhance the absorption of light as well as the intensity of the electromagnetic field. Here, with a one-mode analytical model, we investigate the effect of a correlated disorder on 1D groove arrays i.e.

View Article and Find Full Text PDF

The mechanical properties of lipid monolayers and their responses to shear and compression stresses play an important role in processes such as breathing and eye blinking. We studied the mechanical properties of Langmuir monolayers of a model mixture, composed of an unsaturated lipid, 1-palmitoyl-2-oleoyl--glycero-phosphoethanolamine (POPE), and a saturated lipid, 1,2-dipalmitoyl--glycero-phosphocholine (DPPC). We performed isothermal compressions and sinusoidal shear deformations of these mixed monolayers.

View Article and Find Full Text PDF

This short review describes the work on aqueous foam film stability with the important past contributions of Dotchi Exerowa and Dimo Platikanov, together with advances from other research groups. The review is focused on film rupture, for which few controlled experiments can be found in the literature and as a consequence, our understanding is still limited. The work on rupture of films in foams is described, together with the correlations with the rupture of isolated films.

View Article and Find Full Text PDF

The coarsening of quasi-2D wet foams is well described theoretically by the model of Schimming and Durian, that takes into account the diffusion through the Plateau borders and the vertices in a rigorous manner. In this article, we describe an experimental study of coarsening in which the foam film permeability is measured in such quasi-2D wet foams. We first performed a full characterization of the structure of the studied foams.

View Article and Find Full Text PDF

We studied the dynamics of a cationic surfactant monolayer, Gemini 12-2-12, at the air?water interface for surfactant aqueous solutions at concentrations below the critical micelle concentration. We present surface rheology experiments performed in a Langmuir trough by the oscillatory barrier technique. From these, we found negative surface viscosities at certain frequencies.

View Article and Find Full Text PDF

While coalescence is ultimately the most drastic destabilization process in foams, its underlying processes are still unclear. To better understand them, we track individual coalescence events in two-dimensional foams at controlled capillary pressure. We obtain statistical information revealing the influence of the different parameters which have been previously proposed to explain coalescence.

View Article and Find Full Text PDF

We have studied emulsions made with two- and three-phase oil-water-surfactant systems in which one of the phases is a microemulsion, the other phases being water or/and oil excess phases. Such systems have been extensively studied in the 1970-1980s for applications in enhanced oil recovery. It was found at that time that the emulsions became very unstable in the three-phase systems, but so far few explanations have been proposed.

View Article and Find Full Text PDF

A central challenge for the safe design of nanomaterials (NMs) is the inherent variability of NM properties, both as produced and as they interact with and evolve in, their surroundings. This has led to uncertainty in the literature regarding whether the biological and toxicological effects reported for NMs are related to specific NM properties themselves, or rather to the presence of impurities or physical effects such as agglomeration of particles. Thus, there is a strong need for systematic evaluation of the synthesis and processing parameters that lead to potential variability of different NM batches and the reproducible production of commonly utilized NMs.

View Article and Find Full Text PDF

When surfactants adsorb at liquid interfaces, they not only decrease the surface tension, they confer rheological properties to the interfaces. There are two types of rheological parameters associated to interfacial layers: compression and shear. The elastic response is described by a storage modulus and the dissipation by a loss modulus or equivalently a surface viscosity.

View Article and Find Full Text PDF

Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing.

View Article and Find Full Text PDF

We studied the stability of foams containing small bubbles (radius ≲ 50  μm). The foams are made from aqueous surfactant solutions containing various amounts of glycerol. The foams start breaking at their top, when the liquid volume fraction has decreased sufficiently during liquid drainage.

View Article and Find Full Text PDF

We review the coarsening process of foams made with various surfactants and gases, focusing on physico-chemical aspects. Several parameters strongly affect coarsening: foam liquid fraction and foam film permeability, this permeability depending on the surfactant used. Both parameters may evolve with time: the liquid fraction, due to gravity drainage, and the film permeability, due to the decrease of capillary pressure during bubble growth, and to the subsequent increase in film thickness.

View Article and Find Full Text PDF

The stability of foams made with sponge phases (L3 phases) and lamellar phases (L(α) phases), both containing surfactant bilayers, has been investigated. The extreme stability of foams made with lamellar phases seems essentially due to the high viscosity of the foaming solution, which slows down gravity drainage. Moreover, the foams start draining only when the buoyancy stress overcomes the yield stress of the L(α) phase.

View Article and Find Full Text PDF

We show that, while the gelation of colloidal silica proceeds much faster in the presence of added KCl than NaCl, the final gels are very similar in structure and properties. We have studied the gelation process by visual inspection and by small angle X-ray scattering for a range of salt and silica particle concentrations. The characteristic times of the early aggregation process and the formation of a stress-bearing structure with both salts are shown to collapse onto master curves with single multiplicative constants, linked to the stability ratio of the colloidal suspensions.

View Article and Find Full Text PDF