Three human polymeric IgA (pIgA) myeloma proteins of tetrameric size were compared for their J-chain content, their in vitro secretory component (SC)-binding ability, and their capacity to be transcytosed by polymeric immunoglobulin receptor (pIgR)-expressing epithelial cells in vitro and rat hepatocytes in vivo. One of the three pIgA preparations, pIgA-L, was shown to lack J chain and was unable to combine with purified free human and rat SC, whereas pIgA-G and pIgA-C contained J chain and combined readily with SC. Furthermore, pIgA-L was not transferred into rat bile after intravenous injection, and was hardly transported apically by polarized Madin-Darbey canine kidney cell monolayers expressing the human pIgR, whereas pIgA-G and pIgA-C were efficiently transported in both test systems.
View Article and Find Full Text PDFSecretory immunoglobulin A (S-IgA) participates in the first noninflammatory line of defence of the respiratory tract. S-IgA consists of dimeric IgA (dIgA) produced by plasma cells and secretory component (SC) produced by epithelial cells. This study compared SC production by primary cultures of human bronchial epithelial cells (HBEC) and by respiratory epithelial cell lines.
View Article and Find Full Text PDFBinding of human polymeric IgA ligand to its epithelial cell polymeric Ig receptor, pIgR, has been shown to stimulate pIgR apical transcytosis in an in vitro system, based on polarized confluent MDCK cells expressing rabbit pIgR. The present study aimed at testing whether such a stimulation also occurs in vivo. Transcytosis of pIgR was monitored by rat liver output of total secretory component (SC) into bile, measured by radial immunodiffusion as the sum of free SC and pIgA-bound SC.
View Article and Find Full Text PDFTo emphasize the requirement for a J chain in native polymeric immunoglobulins for their selective transport into exocrine secretions, IgG, purified from two different antisera specific for the human J chain, was shown to: (i) bind in vitro to human polymeric IgA (pIgA) by density gradient ultracentrifugation; (ii) inhibit binding in vitro of rat secretory component to human pIgA; (iii) inhibit hepatic transport of human pIgA into rat bile in vivo; and (iv) inhibit apical transcytosis of pIgA in vitro by polarized human polymeric immunoglobulin receptor (pIgR)-expressing Madin-Darby canine kidney cells. Inhibition of biliary transport increased with the molar ratio of anti-J chain antibodies against pIgA and their incubation time. Anti-J chain F(ab')2 and Fab fragments also inhibited biliary transport, excluding a role for phagocytic clearance or excessive size of the immune complexes.
View Article and Find Full Text PDFVet Immunol Immunopathol
September 1997
Immune cells in pig gut lymph are rather well studied, but data on gut lymph immunoglobulins and their origin are nonexistent. Such data are important to understand the interplay between pig systemic and intestinal immunity as a basis for vaccination studies. In some species, gut lymph contributes much to plasma IgA, but apparently not in humans.
View Article and Find Full Text PDFImmunol Lett
January 1997
Do hamsters, like rats, rabbits and mice, possess an hepatocyte 'IgA pump' whereby circulating plasma polymeric IgA (pIgA) is actively transported into bile, against a concentration gradient, via the polymeric Ig receptor or secretory component (SC)? Precipitating antisera, raised against rat Igs and serum proteins, and crossreacting with their hamster homologues, detected hamster SC by immunoelectrophoresis in bile, but not serum. Gel filtration of hamster bile indicated that free SC eluted between IgG and albumin, as for other mammals. Hamster bile IgA was pIgA, and was true secretory IgA (SIgA) by its reaction with anti-SC antiserum and by SDS-PAGE with reduction.
View Article and Find Full Text PDFStarting from two IgA1 myeloma sera, the isolation of monoclonal monomeric, dimeric, trimeric and tetrameric IgA in a high state of purity and size homogeneity for each serum is described. The method combined repetitive gel filtrations on Ultrogel AcA22 with affinity chromatography on Jacalin-Sepharose. These various forms of pure polymeric IgA obtained from the same monoclonal IgA should allow a precise comparison of their respective structure and reactivity with different IgA-binding proteins, such as IgA Fc-receptors, the polymeric Ig receptor, and lectins.
View Article and Find Full Text PDFRats were immunized three times with cholera toxin via the intraintestinal or intravenous route, and their respective biliary secretory IgA (sIgA) or serum IgG antibodies were affinity-purified on a cholera toxin immunoabsorbent. On a molar basis, the sIgA antibodies were roughly seven-fold more efficient than IgG antibodies in neutralizing cholera toxin in the ligated intestinal loop assay. Various explanations for this difference in neutralizing capacity are proposed.
View Article and Find Full Text PDFConcentrated rat bronchial washings (BW) were analyzed by gel-filtration and immunochemical methods. BW contained mainly albumin, transferrin and IgG. Free secretory component and secretory IgA were identified in BW; the BW-IgA had the same three sedimentation coefficients, i.
View Article and Find Full Text PDF