Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling.
View Article and Find Full Text PDFLigand docking is one of the core technologies in structure-based virtual screening for drug discovery. However, conventional docking tools and existing deep learning tools may suffer from limited performance in terms of speed, pose quality and binding affinity accuracy. Here we propose KarmaDock, a deep learning approach for ligand docking that integrates the functions of docking acceleration, binding pose generation and correction, and binding strength estimation.
View Article and Find Full Text PDF