Publications by authors named "Langan P"

Waterlogging is expected to become a more prominent yield restricting stress for barley as rainfall frequency is increasing in many regions due to climate change. The duration of waterlogging events in the field is highly variable throughout the season, and this variation is also observed in experimental waterlogging studies. Such variety of protocols make intricate physiological responses challenging to assess and quantify.

View Article and Find Full Text PDF

In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry.

View Article and Find Full Text PDF

Depression is a common mental health condition that often occurs in association with other chronic illnesses, and varies considerably in severity. Electronic Health Records (EHRs) contain rich information about a patient's medical history and can be used to train, test and maintain predictive models to support and improve patient care. This work evaluated the feasibility of implementing an environment for predicting mental health crisis among people living with depression based on both structured and unstructured EHRs.

View Article and Find Full Text PDF

Naturally occurring plant cellulose, our most abundant renewable resource, consists of fibers of long polymer chains that are tightly packed in parallel arrays in either of two crystal phases collectively referred to as cellulose I. During mercerization, a process that involves treatment with sodium hydroxide, cellulose goes through a conversion to another crystal form called cellulose II, within which every other chain has remarkably changed direction. We designed a neutron diffraction experiment with deuterium labelling in order to understand how this change of cellulose chain direction is possible.

View Article and Find Full Text PDF

Farmers and breeders aim to improve crop responses to abiotic stresses and secure yield under adverse environmental conditions. To achieve this goal and select the most resilient genotypes, plant breeders and researchers rely on phenotyping to quantify crop responses to abiotic stress. Recent advances in imaging technologies allow researchers to collect physiological data non-destructively and throughout time, making it possible to dissect complex plant responses into quantifiable traits.

View Article and Find Full Text PDF

Yield losses to waterlogging are expected to become an increasingly costly and frequent issue in some regions of the world. Despite the extensive work that has been carried out examining the molecular and physiological responses to waterlogging, phenotyping for waterlogging tolerance has proven difficult. This difficulty is largely due to the high variability of waterlogging conditions such as duration, temperature, soil type, and growth stage of the crop.

View Article and Find Full Text PDF
Article Synopsis
  • Acid-base catalysis is a key chemical mechanism used by enzymes involving proton transfer, but understanding it fully is challenging due to difficulties in observing protons directly.
  • Dihydrofolate reductase (DHFR) serves as a model for this type of catalysis, where it converts dihydrofolate (DHF) into tetrahydrofolate (THF) through hydride transfer and substrate protonation.
  • A recent study using a neutron structure at acidic pH successfully observed the catalytic proton's transfer and proposed a mechanism highlighting the importance of dynamics for solvent entry and substrate protonation via a hydronium ion.
View Article and Find Full Text PDF

Lentiviral vectors (LV) have emerged as a robust technology for therapeutic gene delivery into human cells as advanced medicinal products. As these products are increasingly commercialized, there are concomitant demands for their characterization to ensure safety, efficacy and consistency. Standards are essential for accurately measuring parameters for such product characterization.

View Article and Find Full Text PDF

Protein dynamics are essential to function. One example of this is the various gating mechanisms within ion channels, which are transmembrane proteins that act as gateways into the cell. Typical ion channels switch between an open and closed state via a conformational transition which is often triggered by an external stimulus, such as ligand binding or pH and voltage differences.

View Article and Find Full Text PDF

The COVID-19 disease caused by the SARS-CoV-2 coronavirus has become a pandemic health crisis. An attractive target for antiviral inhibitors is the main protease 3CL M due to its essential role in processing the polyproteins translated from viral RNA. Here we report the room temperature X-ray structure of unliganded SARS-CoV-2 3CL M, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature.

View Article and Find Full Text PDF

The amino-acid sequence of the Toho-1 β-lactamase contains several conserved residues in the active site, including Ser70, Lys73, Ser130 and Glu166, some of which coordinate a catalytic water molecule. This catalytic water molecule is essential in the acylation and deacylation parts of the reaction mechanism through which Toho-1 inactivates specific antibiotics and provides resistance to its expressing bacterial strains. To investigate the function of Glu166 in the acylation part of the catalytic mechanism, neutron and X-ray crystallographic studies were performed on a Glu166Gln mutant.

View Article and Find Full Text PDF

Crystallography is the powerhouse technique for molecular structure determination, with applications in fields ranging from energy storage to drug design. Accurate structure determination, however, relies partly on determining the precise locations and integrated intensities of Bragg peaks in the resulting data. Here, we describe a method for Bragg peak integration that is accomplished using neural networks.

View Article and Find Full Text PDF

Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low- elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal.

View Article and Find Full Text PDF

Martensitic transformations are the first-order crystal-to-crystal phase transitions that occur mostly in materials such as steel, alloys and ceramics, thus having many technological applications. These phase transitions are rarely observed in molecular crystals and have not been detected in protein crystals. Reversibly switchable fluorescent proteins are widely used in biotechnology, including super-resolution molecular imaging, and hold promise as candidate biomaterials for future high-tech applications.

View Article and Find Full Text PDF

The mechanism by which potassium ions are transported through ion channels is currently being investigated by several groups using many different techniques. Clarification of the location of water molecules during transport is central to understanding how these integral membrane proteins function. Neutrons have a unique sensitivity to both hydrogen and potassium, rendering neutron crystallography capable of distinguishing waters from K ions.

View Article and Find Full Text PDF

The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined.

View Article and Find Full Text PDF

Neutron crystallography is a powerful technique for directly visualizing the locations of H atoms in biological macromolecules. This information has provided key new insights into enzyme mechanisms, ligand binding and hydration. However, despite the importance of this information, the application of neutron crystallography in biology has been limited by the relatively low flux of available neutron beams and the large incoherent neutron scattering from hydrogen, both of which contribute to weak diffraction data with relatively low signal-to-background ratios.

View Article and Find Full Text PDF

Potassium ion channels utilize a highly selective filter to rapidly transport K ions across cellular membranes. This selectivity filter is composed of four binding sites which display almost equal electron density in crystal structures with high potassium ion concentrations. This electron density can be interpreted to reflect a superposition of alternating potassium ion and water occupied states or as adjacent potassium ions.

View Article and Find Full Text PDF

The Protein Data Bank (PDB) contains a growing number of models that have been determined using neutron diffraction or a hybrid method that combines X-ray and neutron diffraction. The advantage of neutron diffraction experiments is that the positions of all atoms can be determined, including H atoms, which are hardly detectable by X-ray diffraction. This allows the determination of protonation states and the assignment of H atoms to water molecules.

View Article and Find Full Text PDF

The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed.

View Article and Find Full Text PDF

An introductory overview to the articles on diffraction structural biology in this special issue of the journal.

View Article and Find Full Text PDF

Background: Tension wood is a type of reaction wood in response to bending or leaning stem as a corrective growth process. Tension wood is formed by both natural and man-made processes. Most attractively, tension wood contains higher glucan content and undergoes higher enzymatic conversion to fermentable sugars.

View Article and Find Full Text PDF

Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction.

View Article and Find Full Text PDF

Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.

View Article and Find Full Text PDF