Invest Ophthalmol Vis Sci
May 2020
Purpose: To determine the therapeutic window for gene augmentation for Leber congenital amaurosis (LCA) associated with mutations in LCA5.
Methods: Five patients (ages 6-31) with LCA and biallelic LCA5 mutations underwent an ophthalmic examination including optical coherence tomography (SD-OCT), full-field stimulus testing (FST), and pupillometry. The time course of photoreceptor degeneration in the Lca5gt/gt mouse model and the efficacy of subretinal gene augmentation therapy with AAV8-hLCA5 delivered at postnatal day 5 (P5) (early, n = 11 eyes), P15 (mid, n = 14), and P30 (late, n = 13) were assessed using SD-OCT, histologic study, electroretinography (ERG), and pupillometry.
Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ across and ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons.
View Article and Find Full Text PDFMutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation.
View Article and Find Full Text PDFMost genetically distinct inherited retinal degenerations are primary photoreceptor degenerations. We selected a severe early onset form of Leber congenital amaurosis (LCA), caused by mutations in the gene LCA5, in order to test the efficacy of gene augmentation therapy for a ciliopathy. The LCA5-encoded protein, Lebercilin, is essential for the trafficking of proteins and vesicles to the photoreceptor outer segment.
View Article and Find Full Text PDFChoroideremia (CHM) is a rare monogenic, X-linked recessive inherited retinal degeneration resulting from mutations in the Rab Escort Protein-1 (REP1) encoding CHM gene. The primary retinal cell type leading to CHM is unknown. In this study, we explored the utility of induced pluripotent stem cell-derived models of retinal pigmented epithelium (iPSC-RPE) to study disease pathogenesis and a potential gene-based intervention in four different genetically distinct forms of CHM.
View Article and Find Full Text PDFCornelia de Lange syndrome (CdLS) is a complex disorder with multiple structural and developmental defects caused by mutations in structural and regulatory proteins involved in the cohesin complex. NIPBL, a cohesin regulatory protein, has been identified as a critical protein responsible for the orchestration of transcriptomic regulatory networks necessary for embryonic development. Mutations in NIPBL are responsible for the majority of cases of CdLS.
View Article and Find Full Text PDFMutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis.
View Article and Find Full Text PDFNeurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neuronal microtubules are commonly discussed in the biomedical literature as crucial to the development and maintenance of the nervous system, and have recently gained attention as central to the etiology of neurodegenerative diseases.
View Article and Find Full Text PDFMethods Cell Biol
October 2016
Testing functional hypotheses on the roles played by individual microtubule-related proteins in developing neurons benefits from having an effective means for depleting an individual protein from a population of cultured vertebrate neurons over an appropriate window. Small interfering RNA (siRNA) has the advantage of high transfection efficiency, but has certain limitations that require strategic experimental design. Here we describe the insights that we have gained over the years from using this approach.
View Article and Find Full Text PDFIndividual microtubules (MTs) in the axon consist of a stable domain that is highly acetylated and a labile domain that is not. Traditional MT-severing proteins preferentially cut the MT in the stable domain. In Drosophila, fidgetin behaves in this fashion, with targeted knockdown resulting in neurons with a higher fraction of acetylated (stable) MT mass in their axons.
View Article and Find Full Text PDFMüller cell activation is an early finding in diabetic retinopathy (DR), but its physiopathologic role in the disease is still unclear, especially in the early phases. We investigated on Müller glial activation in primary rat retinal cultures, exposed to High Glucose (HG), and in retinas from streptozotocin (stz)-induced diabetic rats. First of all, we checked if the presence of Müller glia influenced HG neurotoxicity.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2011
Purpose: Curcumin, a phenolic compound extracted from the rhizome of Curcuma longa, was found to attenuate NMDA-induced excitotoxicity in primary retinal cultures. This study was conducted to further characterize curcumin neuroprotective ability and analyze its effects on NMDA receptor (NMDAr).
Methods: NMDAr modifications were analyzed in primary retinal cell cultures using immunocytochemistry, whole-cell patch-clamp recording and western blot analysis.
The early effects of the diabetic milieu on retinal tissue and their relation to the Renin-Angiotensin system (RAS) activation are poorly known. Here we investigated RAS signaling in retinas explanted from adult rats exposed for 48 h to high glucose (HG), with or without the Angiotensin Converting Enzyme inhibitor enalaprilat, which blocks RAS. HG was observed to i) initiate a phosphotyrosine-dependent signaling cascade; ii) up-regulate Angiotensin(1) Receptor (AT(1)R); iii) activate src tyrosine kinase and increase phosphorylation of Pyk2, PLCgamma1 and ERK1/2; and iv) activate Akt and the transcription factor CREB.
View Article and Find Full Text PDF