Publications by authors named "Laney S"

An ice buoy system was developed to measure oceanographic properties of freshwater plumes that occur in Arctic coastal oceans under landfast sea ice during the spring freshet. By implanting such systems into sea ice weeks or months in advance of the freshet event, sensors can be located immediately underneath the sea ice layer in situ at depths that riverine freshwater will occupy later when the freshet arrives. This observing approach is modular, can accommodate a wide range of sensors, is designed intentionally for use in remote regions, and can be readily deployed in any nearshore region that can be accessed by snowmachine.

View Article and Find Full Text PDF

Silicon nanostructuring imparts unique material properties including antireflectivity, antifogging, anti-icing, self-cleaning, and/or antimicrobial activity. To tune these properties however, a good control over features' size and shape is essential. Here, a versatile fabrication process is presented to achieve tailored silicon nanostructures (thin/thick pillars, sharp/truncated/re-entrant cones), of pitch down to ∼50 nm, and high-aspect ratio (>10).

View Article and Find Full Text PDF

Nature-inspired nanopatterning offers exciting multifunctionality spanning antireflectance and the ability to repel water/fog, oils, and bacteria; strongly dependent upon nanofeature size and morphology. However, such patterning in glass is notoriously difficult, paradoxically, due to the same outstanding chemical and thermal stability that make glass so attractive. Here, regenerative secondary mask lithography is introduced and exploited to enable customized glass nanopillars through dynamic nanoscale tunability of the side-wall profile and aspect ratio (>7).

View Article and Find Full Text PDF

Slippery liquid infused porous surfaces (SLIPS) are an important class of repellent materials, comprising micro/nanotextures infused with a lubricating liquid. Unlike superhydrophobic surfaces, SLIPS do not rely on a stable air-liquid interface and thus can better manage low surface tension fluids, are less susceptible to damage under physical stress, and are able to self-heal. However, these collective properties are only efficient as long as the lubricant remains infused, which has proved challenging.

View Article and Find Full Text PDF

Surface structuring provides a broad range of water-repellent materials known for their ability to reflect millimetre-sized raindrops. Dispelling water at the considerably reduced scale of fog or dew, however, constitutes a significant challenge, owing to the comparable size of droplets and structures. Nonetheless, a surface comprising nanocones was recently reported to exhibit strong anti-fogging behaviour, unlike pillars of the same size.

View Article and Find Full Text PDF

Periodic nanotube arrays render enhanced functional properties through their interaction with light and matter, but to reach optimal performance for technologically prominent applications, such as wettability or photonics, structural fine-tuning is essential. Nonetheless, a universal and scalable method providing independent dimension control, high aspect ratios, and the prospect of further structural complexity remains unachieved. Here, we answer this need through an atomic layer deposition (ALD)-enabled multiple patterning.

View Article and Find Full Text PDF

Optical remote sensing of aquatic environments using aerial drones is becoming more feasible as lightweight, low-power, spectral cameras increase in availability. Use of these cameras in such applications involves complex trade-offs in optical design and in deployment strategies, and simulations provide a means to examine this multidimensional design space to identify specific limitations on performance for a given measurement scenario. In this paper, such a simulation framework is developed, and its use in two realistic aquatic remote sensing scenarios is explored.

View Article and Find Full Text PDF

We sought to identify patterns of knowledge, attitudes, and behaviors (KABs) about influenza and influenza vaccination among healthcare personnel (HCP) and define characteristics associated with these patterns. We used an Internet panel survey of HCP (N = 2265) during March 27-April 17, 2018; clustered HCP by their vaccination-related KABs. Four clusters were identified: Immunization Champions (61.

View Article and Find Full Text PDF

Low-power, lightweight, off-the-shelf imaging spectrometers, deployed on above-water fixed platforms or on low-altitude aerial drones, have significant potential for enabling fine-scale assessment of radiometrically derived water quality properties (WQPs) in oceans, lakes, and reservoirs. In such applications, it is essential that the measured water-leaving spectral radiances be corrected for surface-reflected light, i.e.

View Article and Find Full Text PDF

Background: Currently, molecular xenomonitoring efforts for lymphatic filariasis rely on PCR or real-time PCR-based detection of Brugia malayi, Brugia timori and Wuchereria bancrofti in mosquito vectors. Most commonly, extraction of DNA from mosquitoes is performed using silica column-based technologies. However, such extractions are both time consuming and costly, and the diagnostic testing which follows typically requires expensive thermal cyclers or real-time PCR instruments.

View Article and Find Full Text PDF

Background: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean-Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease.

View Article and Find Full Text PDF

Background: The monitoring and evaluation of lymphatic filariasis (LF) has largely relied on the detection of antigenemia and antibodies in human populations. Molecular xenomonitoring (MX), the detection of parasite DNA/RNA in mosquitoes, may be an effective complementary method, particularly for detecting signals in low-level prevalence areas where Culex is the primary mosquito vector. This paper investigated the application of a household-based sampling method for MX in Tamil Nadu, India.

View Article and Find Full Text PDF

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated.

View Article and Find Full Text PDF

Measurement biases arising from changes in temperature can be a major concern when using miniature spectrometers in extreme environments, particularly when temperature stabilization approaches are not feasible. Here, temperature-related biases of a low-power field spectrometry system comprised of a CMOS miniature monolithic spectrometer module and custom driver electronics were examined between -40°C and +25.6°C, well below the stated operating range of this particular spectrometer.

View Article and Find Full Text PDF

With the Global Program for the Elimination of Lymphatic Filariasis continuing to make strides towards disease eradication, many locations endemic for the causative parasites of lymphatic filariasis are realizing a substantial decrease in levels of infection and rates of disease transmission. However, with measures of disease continuing to decline, the need for time-saving and economical molecular diagnostic assays capable of detecting low levels of parasite presence is increasing. This need is greatest in locations co-endemic for both Wuchereria bancrofti and Brugia parasites because testing for both causative agents individually results in significant increases in labor and reagent costs.

View Article and Find Full Text PDF
Article Synopsis
  • A significant phytoplankton bloom was observed beneath thick sea ice in the Chukchi Sea, challenging the belief that such blooms only occur in ice-free waters.
  • The bloom had a high concentration of diatoms and demonstrated rapid growth and primary production rates.
  • Researchers indicate that under-ice blooms could be common in nutrient-rich Arctic regions, suggesting that current satellite estimates of primary production in these areas are likely much lower than the actual amounts, potentially by a factor of ten.
View Article and Find Full Text PDF

Successful mass drug administration (MDA) campaigns have brought several countries near the point of Lymphatic Filariasis (LF) elimination. A diagnostic tool is needed to determine when the prevalence levels have decreased to a point that MDA campaigns can be discontinued without the threat of recrudescence. A six-country study was conducted assessing the performance of seven diagnostic tests, including tests for microfilariae (blood smear, PCR), parasite antigen (ICT, Og4C3) and antifilarial antibody (Bm14, PanLF, Urine SXP).

View Article and Find Full Text PDF

Lymphatic filariasis (LF) is targeted for worldwide elimination. In Yemen, all mainland implementation units met the WHO criteria for stopping mass drug administration (MDA) after 5 rounds. However, in Socotra Island these criteria were not met.

View Article and Find Full Text PDF

Seven rounds of mass drug administration (MDA) have been administered in Leogane, Haiti, an area hyperendemic for lymphatic filariasis (LF). Sentinel site surveys showed that the prevalence of microfilaremia was reduced to <1% from levels as high as 15.5%, suggesting that transmission had been reduced.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a new assay to differentiate between infective and non-infective mosquitoes carrying Wuchereria bancrofti, a parasite responsible for lymphatic filariasis.
  • By utilizing reverse-transcriptase PCR (RT-PCR), the assay detects specific mRNA levels indicative of the infective L3 larvae stage in mosquitoes.
  • This new test can detect both infective and any-stage larvae in mosquito populations, providing valuable insights for monitoring and controlling filariasis transmission.
View Article and Find Full Text PDF

Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle.

View Article and Find Full Text PDF

In addition to monitoring infection in the human host, there is also a need to assess larval infection in the vector mosquito population to evaluate the success of interventions for eliminating lymphatic filariasis transmission from endemic communities. Here, we review the current status of the available tools for quantifying vector infection and existing knowledge and evidence regarding potential infection thresholds for determining transmission interruption, to assess the potential for using vector infection monitoring as a tool for evaluating the success of filariasis treatment programmes.

View Article and Find Full Text PDF

Nonlinear dynamics in photon capture and uptake at the photosystem level may have a strong effect on photosynthetic yield. However, the magnitude of such effects is difficult to estimate theoretically because nonlinear systems often cannot be represented accurately using equations. A nonanalytical simulation was developed that used a simple decision tree and Monte Carlo methods, instead of equations, to model how a population of photosystems absorbs and utilizes photons from an ambient light field.

View Article and Find Full Text PDF