Publications by authors named "Lanerolle N"

The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players.

View Article and Find Full Text PDF

The neuropathology of mild traumatic brain injury in humans resulting from exposure to explosive blast is poorly understood as this condition is rarely fatal. A large animal model may better reflect the injury patterns in humans. We investigated the effect of explosive blasts on the constrained head minimizing the effects of whole head motion.

View Article and Find Full Text PDF

Temporal Lobe Epilepsy (TLE) is frequently associated with changes in protein composition and post-translational modifications (PTM) that exacerbate the disorder. O-linked-β-N-acetyl glucosamine (O-GlcNAc) is a PTM occurring at serine/threonine residues that is derived from and closely associated with metabolic substrates. The enzymes O-GlcNActransferase (OGT) and O-GlcNAcase (OGA) mediate the addition and removal, respectively, of the O-GlcNAc modification.

View Article and Find Full Text PDF

Background: The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood.

View Article and Find Full Text PDF

Objective: In vivo studies of epilepsy typically use prolonged status epilepticus to generate recurrent seizures. However, reports on variable status duration have found discrete differences in injury after 40-50 min of seizures, suggesting a pathophysiologic sensitivity to seizure duration. In this report we take a multivariate cluster analysis to study a short duration status epilepticus model using in vivo 7T magnetic resonance spectroscopy (MRS) and histologic evaluation.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) is the signature injury in warfighters exposed to explosive blasts. The pathology underlying mTBI is poorly understood, as this condition is rarely fatal and thus postmortem brains are difficult to obtain for neuropathological studies. Here we report on studies of an experimental model with a gyrencephalic brain that is exposed to single and multiple explosive blast pressure waves.

View Article and Find Full Text PDF

There is little experimental in vivo data on how differences in seizure duration in experimental status epilepticus influence metabolic injury. This is of interest given that in humans, status duration is a factor that influences the probability of subsequent development of epilepsy. This question is studied using 7-T magnetic resonance (MR) spectroscopy, T2 relaxometry in the incremented kainate rodent model of temporal lobe epilepsy, using two durations of status epilepticus, 1.

View Article and Find Full Text PDF

The neuropathology of traumatic brain injury (TBI) from various causes in humans is not as yet fully understood. The authors review and compare the known neuropathology in humans with severe, moderate, and mild TBI (mTBI) from nonpenetrating closed head injury (CHI) from blunt impacts and explosive blasts, as well as penetrating head injury (PHI). Penetrating head injury and CHI that are moderate to severe are more likely than mTBI to cause gross disruption of the cerebral vasculature.

View Article and Find Full Text PDF

Explosive blast shock waves and blunt impact to the head are two types of loading shown to result in mild traumatic brain injury (mTBI). While mTBI from these two causes shares some common features behaviorally, there are distinct differences in the pathophysiology of the underlying injury mechanisms. Various elucidations have been offered in the literature to explain the organic damage associated with mTBI resulting from both types of loading.

View Article and Find Full Text PDF

Objective: Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI).

View Article and Find Full Text PDF

Purpose: Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury with 70% associated with blast exposure. Tragically, 20-50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult.

View Article and Find Full Text PDF

Purpose: Increased interictal concentrations of extracellular hippocampal glutamate have been implicated in the pathophysiology of temporal lobe epilepsy (TLE). Recent studies suggest that perturbations of the glutamate metabolizing enzymes glutamine synthetase (GS) and phosphate activated glutaminase (PAG) may underlie the glutamate excess in TLE. However, the molecular mechanism of the enzyme perturbations remains unclear.

View Article and Find Full Text PDF

Epilepsy is characterized by recurrent spontaneous seizures due to hyperexcitability and hypersynchrony of brain neurons. Current theories of pathophysiology stress neuronal dysfunction and damage, and aberrant connections as relevant factors. Most antiepileptic drugs target neuronal mechanisms.

View Article and Find Full Text PDF

Recent experimental data in mice have shown that the inwardly rectifying K channel Kir4.1 mediates K spatial buffering in the hippocampus. Here we used immunohistochemistry to examine the distribution of Kir4.

View Article and Find Full Text PDF

Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in several animal models of the disorder.

View Article and Find Full Text PDF

Mild traumatic brain injury resulting from exposure to an explosive blast is associated with significant neurobehavioral outcomes in soldiers. Little is known about the neuropathologic consequences of such an insult to the human brain. This study is an attempt to understand the effects of an explosive blast in a large animal gyrencephalic brain blast injury model.

View Article and Find Full Text PDF

Monocarboxylate transporter 1 (MCT1) facilitates the transport of important metabolic fuels (lactate, pyruvate and ketone bodies) and possibly also acidic drugs such as valproic acid across the blood-brain barrier. Because an impaired brain energy metabolism and resistance to antiepileptic drugs are common features of temporal lobe epilepsy (TLE), we sought to study the expression of MCT1 in the brain of patients with this disease. Immunohistochemistry and immunogold electron microscopy were used to assess the distribution of MCT1 in brain specimens from patients with TLE and concomitant hippocampal sclerosis (referred to as mesial TLE or MTLE (n=15)), patients with TLE and no hippocampal sclerosis (non-MTLE, n=13) and neurologically normal autopsy subjects (n=8).

View Article and Find Full Text PDF

Astrocytes form a significant constituent of seizure foci in the human brain. For a long time it was believed that astrocytes play a significant role in the causation of seizures. With the increase in our understanding of the unique biology of these cells, their precise role in seizure foci is receiving renewed attention.

View Article and Find Full Text PDF

An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme glutamine synthetase is deficient in the hippocampus in patients with MTLE, and we postulated that this deficiency is critically involved in the pathophysiology of the disease.

View Article and Find Full Text PDF

Approximately one-third of all patients with epilepsy continue to suffer from seizures even after appropriate treatment with antiepileptic drugs. Medically refractory epilepsies are associated with considerable morbidity and mortality, and more efficacious therapies against these disorders are clearly needed. However, the discovery of better therapies has been lagging due to an incomplete understanding of the mechanisms underlying the development of epilepsy (epileptogensis) and seizures (ictogenesis) in humans.

View Article and Find Full Text PDF

Reduced hippocampal N-acetyl aspartate (NAA) is commonly observed in patients with advanced, chronic temporal lobe epilepsy (TLE). It is unclear, however, whether an NAA deficit is also present during the clinically quiescent latent period that characterizes early TLE. This question has important implications for the use of MR spectroscopic imaging (MRSI) in the early identification of patients at risk for TLE.

View Article and Find Full Text PDF

Patients with temporal lobe epilepsy (TLE) often have a shrunken hippocampus that is known to be the location in which seizures originate. The role of the sclerotic hippocampus in the causation and maintenance of seizures in temporal lobe epilepsy (TLE) has remained incompletely understood despite extensive neuropathological investigations of this substrate. To gain new insights and develop new testable hypotheses on the role of sclerosis in the pathophysiology of TLE, the differential gene expression profile was studied.

View Article and Find Full Text PDF

Radiosurgery is being investigated as an alternative to open surgical resection for patients with medial temporal lobe epilepsy. Additionally, the biological effects of mesial temporal radiosurgery are being evaluated using several animal models. The mechanisms through which radiosurgery exerts antiepileptic effects have not yet been proven, but time and dose dependency have been repeatedly demonstrated.

View Article and Find Full Text PDF

Microinfusion of alpha2 adrenoreceptor agonists and antagonists into amygdala has contrasting effects on evoked and spontaneous seizure susceptibility in amygdala-kindled kittens. Subjects were 14 preadolescent kittens between 3 and 4 months old at the beginning of kindling. The same protocol was followed except that half the kittens received microinfusions (1 mul) of the alpha2 agonist clonidine (CLON; 1.

View Article and Find Full Text PDF