Publications by authors named "Lane Jaeckle Santos"

Background: Intrauterine growth restriction (IUGR) is a common complication of pregnancy and is associated with significant neurological deficits in infants, including white matter damage. Previous work using an animal model of IUGR has demonstrated that IUGR rats exhibit neurobehavioral deficits and developmental delays in oligodendrocyte maturation and myelination, but the mechanisms which cause this delay are unknown. Inflammation may be an important etiological factor in IUGR and has been recognized as playing a fundamental role in the pathogenesis of myelin disorders, including cerebral palsy.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes developing in adulthood. In previous studies that used bilateral uterine artery ligation in a rat model of IUGR, age-associated decline in glucose homeostasis and islet function was revealed. To elucidate mechanisms contributing to IUGR pathogenesis, the islet transcriptome was sequenced from 2-week-old rats, when in vivo glucose tolerance is mildly impaired, and at 10 weeks of age, when rats are hyperglycemic and have reduced β-cell mass.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) leads to development of type 2 diabetes (T2D) in adulthood. The mechanisms underlying this phenomenon have not been fully elucidated. Inflammation is associated with T2D; however, it is unknown whether inflammation is causal or secondary to the altered metabolic state.

View Article and Find Full Text PDF

We describe three patients with a comparable deletion encompassing SLC25A43, SLC25A5, CXorf56, UBE2A, NKRF, and two non-coding RNA genes, U1 and LOC100303728. Moderate to severe intellectual disability (ID), psychomotor retardation, severely impaired/absent speech, seizures, and urogenital anomalies were present in all three patients. Facial dysmorphisms include ocular hypertelorism, synophrys, and a depressed nasal bridge.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common type of birth defect, and the etiology of most cases is unknown. CHD often occurs in association with other birth malformations, and only in a minority are disease-causing chromosomal abnormalities identified. We hypothesized that children with CHD and additional birth malformations have cryptic chromosomal abnormalities that might be uncovered using recently developed DNA microarray-based methodologies.

View Article and Find Full Text PDF

X-linked reticulate pigmentary disorder with systemic manifestations in males (PDR) is very rare. Affected males are characterized by cutaneous and visceral symptoms suggestive of abnormally regulated inflammation. A genetic linkage study of a large Canadian kindred previously mapped the PDR gene to a greater than 40 Mb interval of Xp22-p21.

View Article and Find Full Text PDF