Publications by authors named "Landweber L"

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

Genomes sometimes undergo large-scale rearrangements. Programmed genome rearrangements in ciliates offer an extreme example, making them a compelling model system to study DNA rearrangements. Currently, available methods for genome annotation are not adequate for highly scrambled genomes.

View Article and Find Full Text PDF

Nuclear dimorphism is a fundamental feature of ciliated protozoa, which have separate somatic and germline genomes in two distinct organelles within a single cell. The transcriptionally active somatic genome, contained within the physically larger macronucleus, is both structurally and functionally different from the silent germline genome housed in the smaller micronucleus. This difference in genome architecture is particularly exaggerated in , in which the somatic genome comprises tens of thousands of gene-sized nanochromosomes maintained at a high and variable ploidy, while the germline has a diploid set of megabase-scale chromosomes.

View Article and Find Full Text PDF

Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include , and , but only the lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precisely programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the lineage.

View Article and Find Full Text PDF

DNA methylation plays vital roles in both prokaryotes and eukaryotes. There are three forms of DNA methylation in prokaryotes: N-methyladenine (6mA), N-methylcytosine (4mC), and 5-methylcytosine (5mC). Although many sequencing methods have been developed to sequence specific types of methylation, few technologies can be used for efficiently mapping multiple types of methylation.

View Article and Find Full Text PDF

The germline genomes of ciliated protists are replete with "junk" DNA insertions that need to be removed for gene expression. Unlike introns, these are spliced as DNA. What is their source, and why are they so abundant? A new study in PLOS Biology supports a classic model of transposon origins.

View Article and Find Full Text PDF

The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC).

View Article and Find Full Text PDF

Ciliates are microbial eukaryotes with distinct somatic and germline genomes. Postzygotic development involves extensive remodeling of the germline genome to form somatic chromosomes. Ciliates therefore offer a valuable model for studying the architecture and evolution of programed genome rearrangements.

View Article and Find Full Text PDF

Background: Whole-genome shotgun sequencing, which stitches together millions of short sequencing reads into a single genome, ushered in the era of modern genomics and led to a rapid expansion of the number of genome sequences available. Nevertheless, assembly of short reads remains difficult, resulting in fragmented genome sequences. Ultimately, only a sequencing technology capable of capturing complete chromosomes in a single run could resolve all ambiguities.

View Article and Find Full Text PDF

, like other ciliates, has separate germline and somatic nuclei. The diploid germline genome in the micronucleus is composed of long conventional chromosomes. The macronucleus contains a somatic genome which is naturally fragmented into thousands of kilobase-sized chromosomes.

View Article and Find Full Text PDF

The ciliate contains two nuclei: a germline micronucleus and a somatic macronucleus. These two nuclei diverge significantly in genomic structure. The micronucleus contains approximately 100 chromosomes of megabase scale, while the macronucleus contains 16,000 gene-sized, high ploidy "nanochromosomes.

View Article and Find Full Text PDF

Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci.

View Article and Find Full Text PDF

DNA N6-adenine methylation (6mA) has recently been described in diverse eukaryotes, spanning unicellular organisms to metazoa. Here, we report a DNA 6mA methyltransferase complex in ciliates, termed MTA1c. It consists of two MT-A70 proteins and two homeobox-like DNA-binding proteins and specifically methylates dsDNA.

View Article and Find Full Text PDF

Ciliates have two different types of nuclei per cell, with one acting as a somatic, transcriptionally active nucleus (macronucleus; abbr. MAC) and another serving as a germline nucleus (micronucleus; abbr. MIC).

View Article and Find Full Text PDF

Dicer-dependent small noncoding RNAs play important roles in gene regulation in a wide variety of organisms. Endogenous small interfering RNAs (siRNAs) are part of an ancient pathway of transposon control in plants and animals. The ciliate, has approximately 16,000 gene-sized chromosomes in its somatic nucleus.

View Article and Find Full Text PDF

Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.

View Article and Find Full Text PDF

The ciliate maintains two genomes: a germline genome that is active only during sexual conjugation and a transcriptionally active, somatic genome that derives from the germline via extensive sequence reduction and rearrangement. Previously, we found that long noncoding (lnc) RNA "templates"-telomere-containing, RNA-cached copies of mature chromosomes-provide the information to program the rearrangement process. Here we used a modified RNA-seq approach to conduct the first genome-wide search for endogenous, telomere-to-telomere RNA transcripts.

View Article and Find Full Text PDF

Some genera of ciliates, such as Oxytricha and Stylonychia, undergo massive genome reorganization during development and provide model organisms to study DNA rearrangement. A common feature of these ciliates is the presence of two types of nuclei: a germline micronucleus and a transcriptionally-active somatic macronucleus containing over 16,000 gene sized "nano-chromosomes". During conjugation the old parental macronucleus disintegrates and a new macronucleus forms from a copy of the zygotic micronucleus.

View Article and Find Full Text PDF

The genome is often described as the information repository of an organism. Whether millions or billions of letters of DNA, its transmission across generations confers the principal medium for inheritance of organismal traits. Several emerging areas of research demonstrate that this definition is an oversimplification.

View Article and Find Full Text PDF

Chromosomal fusions are common in normal and cancer cells and can produce aberrant gene products that promote transformation. The mechanisms driving these fusions are poorly understood, but recurrent fusions are widespread. This suggests an underlying mechanism, and some authors have proposed a possible role for RNA in this process.

View Article and Find Full Text PDF

Background: Transposable elements are a major player contributing to genetic variation and shaping genome evolution. Multiple independent transposon domestication events have occurred in ciliates, recruiting transposases to key roles in cellular processes. In the ciliate Oxytricha trifallax, the telomere-bearing elements (TBE), a Tc1/mariner transposon, occupy a significant portion of the germline genome and are involved in programmed genome rearrangements that produce a transcriptionally active somatic nucleus from a copy of the germline nucleus during development.

View Article and Find Full Text PDF

The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture.

View Article and Find Full Text PDF

Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages.

View Article and Find Full Text PDF

Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Oxytricha trifallax, a unicellular eukaryote, undergoes programmed genome rearrangements to form an active somatic nucleus from its germline nucleus, removing noncoding DNA and rearranging segments to create functional genes.
  • The process allows single DNA segments to contribute to multiple somatic genes through alternative processing, similar to how alternative mRNA splicing works, resulting in increased genetic variation and the evolution of new genes.
  • The study shows that alternative DNA splicing, driven by the emergence of new gene segments, leads to faster evolving genes with different expression profiles, demonstrating how genomic rearrangements foster evolutionary innovation.
View Article and Find Full Text PDF