Publications by authors named "Landon S Wootton"

Fast neutron therapy is a high linear energy transfer (LET) radiation treatment modality offering advantages over low LET radiations. Multileaf collimator technology reduces normal-tissue dose (toxicity) and makes neutron therapy more comparable to MV x-ray treatments. Published clinical-trial and other experiences with fast neutron therapy are reported.

View Article and Find Full Text PDF

Background: Treatments for soft tissue sarcoma (STS) include extensive surgical resection, radiation and chemotherapy, and can necessitate specialized care and excellent social support. Studies have demonstrated that socioeconomic factors, such as income, marital status, urban/rural residence, and educational attainment as well as treatment at high-volume institution may be associated with overall survival (OS) in STS.

Methods: In order to explore the effect of socio-economic factors on OS in patients treated at a high-volume center, we performed a retrospective analysis of STS patients treated at a single institution.

View Article and Find Full Text PDF

Multi-view classification with limited sample size and data augmentation is a very common machine learning (ML) problem in medicine. With limited data, a triplet network approach for two-stage representation learning has been proposed. However, effective training and verifying the features from the representation network for their suitability in subsequent classifiers are still unsolved problems.

View Article and Find Full Text PDF

The delivery of radiation therapy shares many of the challenges encountered in imaging procedures. As in imaging, such as MRI, organ motion must be reduced to a minimum, often for lengthy time periods, to effectively target the tumor during imaging-guided therapy while reducing radiation dose to nearby normal tissues. For patients, radiation therapy is frequently a stress- and anxiety-provoking medical procedure, evoking fear from negative perceptions about irradiation, confinement from immobilization devices, claustrophobia, unease with equipment, physical discomfort, and overall cancer fear.

View Article and Find Full Text PDF

The University of Washington (UW) Clinical Neutron Therapy System (CNTS) has been used to treat over 3300 patients. Treatment planning for these patients is currently performed using an MV x-ray model in Pinnacle® adapted to fit measurements of fast neutron output factors, wedge factors, depth-dose and lateral profiles. While this model has provided an adequate representation of the CNTS for 3D conformal treatment planning, later versions of Pinnacle did not allow for isocentric gantry rotation machines with a source-to-axis distance of 150 cm.

View Article and Find Full Text PDF

Purpose: Surface-guided radiation therapy (SGRT) is a nonionizing imaging approach for patient setup guidance, intra-fraction monitoring, and automated breath-hold gating of radiation treatments. SGRT employs the premise that the external patient surface correlates to the internal anatomy, to infer the treatment isocenter position at time of treatment delivery. Deformations and posture variations are known to impact the correlation between external and internal anatomy.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how radiomic features from MRI can predict overall survival in patients with soft tissue sarcomas (STS).
  • It analyzes two groups of patients, extracting 30 radiomic features from MR images and comparing the effectiveness of clinical-only, radiomics-only, and combined clinical and radiomics models.
  • Findings indicate that combining radiomic features with clinical data improves the ability to predict patient survival, suggesting that this approach could enhance personalized treatment strategies for STS.
View Article and Find Full Text PDF

Purpose: Patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT) is a ubiquitous clinical procedure, but conventional methods have often been criticized as being insensitive to errors or less effective than other common physics checks. Recently, there has been interest in the application of radiomics, quantitative extraction of image features, to radiotherapy QA. In this work, we investigate a deep learning approach to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient-specific QA.

View Article and Find Full Text PDF

Purpose: To improve the detection of errors in intensity-modulated radiation therapy (IMRT) with a novel method that uses quantitative image features from radiomics to analyze gamma distributions generated during patient specific quality assurance (QA).

Methods And Materials: One hundred eighty-six IMRT beams from 23 patient treatments were delivered to a phantom and measured with electronic portal imaging device dosimetry. The treatments spanned a range of anatomic sites; half were head and neck treatments, and the other half were drawn from treatments for lung and rectal cancers, sarcoma, and glioblastoma.

View Article and Find Full Text PDF

Radiation therapy is an effective treatment for primary orbital lymphomas. Lens shielding with electrons can reduce the risk of high-grade cataracts in patients undergoing treatment for superficial tumors. This work evaluates the dosimetric effects of a suspended eye shield, placement of bolus, and varying electron energies.

View Article and Find Full Text PDF

The University of Washington (UW) Clinical Neutron Therapy System (CNTS), which generates high linear energy transfer fast neutrons through interactions of 50.5 MeV protons incident on a Be target, has depth-dose characteristics similar to 6 MV x-rays. In contrast to the fixed beam angles and primitive blocking used in early clinical trials of neutron therapy, the CNTS has a gantry with a full 360° of rotation, internal wedges, and a multi-leaf collimator (MLC).

View Article and Find Full Text PDF

The Mobetron is a mobile electron accelerator designed to deliver therapeutic radiation dose intraoperatively while diseased tissue is exposed. Experience with the Mobetron 1000 has been reported extensively. However, since the time of those publications a new model, the Mobetron 2000, has become commercially available.

View Article and Find Full Text PDF

A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies.

View Article and Find Full Text PDF

Endorectal balloons (ERBs) are routinely used in prostate proton radiation therapy to immobilize the prostate and spare the rectal wall. Rectal gas can distend the rectum and displace the prostate even in the presence of ERBs. The purpose of this work was to quantify the effects an ERB with a passive gas release conduit had on the incidence of rectal gas.

View Article and Find Full Text PDF

An increasing number of patients undergoing proton radiotherapy have cardiac implantable electrical devices (CIEDs). We recently encountered a situation in which a high-voltage coil on a lead from an implanted cardiac defibrillator was located within the clinical treatment volume for a patient receiving proton radiotherapy for esophageal cancer. To study the effects of the lead on the dose delivery, we placed a high-Z CIED lead at both the center and the distal edge of a clinical spread-out Bragg peak (SOBP) in a water phantom, in both a stationary position and with the lead moving in a periodic pattern to simulate cardiorespiratory movement.

View Article and Find Full Text PDF